为缓解YOLOv7在检测个人防护用品时面临标签重写、标签分配不平衡和特征耦合等问题,提出一种基于改进YOLOv7的检测方法.首先去除YOLOv7的大尺度和中尺度输出层,以降低标签重写率,且保证输出层得到充分训练;其次将输出层的定位和分类解耦...为缓解YOLOv7在检测个人防护用品时面临标签重写、标签分配不平衡和特征耦合等问题,提出一种基于改进YOLOv7的检测方法.首先去除YOLOv7的大尺度和中尺度输出层,以降低标签重写率,且保证输出层得到充分训练;其次将输出层的定位和分类解耦,避免不同任务的特征表示互相影响,并选择在边界框级别检测防护服,在关键点级别检测防护帽和防护手套;最后引入部分卷积,实现实时检测.为验证该方法的有效性,使用实验人员穿戴防护用品的图像数据对所提方法进行验证.结果表明,相比YOLOv7,该方法的精确率和召回率分别提高了4.1和4.5个百分点,FPS(Frames Per Second)提升了1.3帧,可满足实验室场景下的个人防护用品穿戴检测需求.展开更多
文摘为缓解YOLOv7在检测个人防护用品时面临标签重写、标签分配不平衡和特征耦合等问题,提出一种基于改进YOLOv7的检测方法.首先去除YOLOv7的大尺度和中尺度输出层,以降低标签重写率,且保证输出层得到充分训练;其次将输出层的定位和分类解耦,避免不同任务的特征表示互相影响,并选择在边界框级别检测防护服,在关键点级别检测防护帽和防护手套;最后引入部分卷积,实现实时检测.为验证该方法的有效性,使用实验人员穿戴防护用品的图像数据对所提方法进行验证.结果表明,相比YOLOv7,该方法的精确率和召回率分别提高了4.1和4.5个百分点,FPS(Frames Per Second)提升了1.3帧,可满足实验室场景下的个人防护用品穿戴检测需求.