期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
3D稀疏卷积结构下融合空间点与体素关系建模的LiDAR点云跟踪方法
1
作者 田胜景 韩一男 +2 位作者 赵宪通 刘秀平 张明 《电子学报》 EI CAS CSCD 北大核心 2024年第10期3527-3540,共14页
稀疏卷积在处理激光雷达点云单目标跟踪时的潜力尚未得到充分发掘.目前,绝大多数点云跟踪算法使用基于球邻域的骨干网络,其显存计算资源占用大并且目标感知的关系建模不充分.针对此问题,本文提出一种基于稀疏卷积结构的LiDAR(Lightlaser... 稀疏卷积在处理激光雷达点云单目标跟踪时的潜力尚未得到充分发掘.目前,绝大多数点云跟踪算法使用基于球邻域的骨干网络,其显存计算资源占用大并且目标感知的关系建模不充分.针对此问题,本文提出一种基于稀疏卷积结构的LiDAR(Lightlaser Detection And Ranging)点云跟踪算法,并创新性地融合了空间点与体素双通道的关系建模模块,以高效适应稀疏框架下目标判别信息的嵌入.首先,本文采用3D稀疏卷积残差网络来分别提取模板和搜索区域的特征,并利用反卷积来获取逐点特征来保证跟踪任务中对空间位置特性的要求.其次,关系建模模块进一步在模板与搜索区域特征之间计算相似度语义查询表.为了捕捉到模板与搜索区域间细粒度的关联性,该模块一方面在空间点通道中利用近邻算法找出每个搜索区域点的模板近邻点,并根据语义查询表提取对应特征;另一方面,在体素通道中以每个搜索区域点为中心构建局部多尺度体素,并根据落入体素单元的模板点索引计算语义查询表中值的累计和.最后,将双通道的特征融合并送入基于鸟瞰图的候选包围盒生成模块来回归目标包围盒.为了验证所提出方法的优越性,本文在KITTI和NuScenes数据集进行了测试,对比其他使用稀疏卷积的算法,本文方法平均成功率和精确率分别提升了11.0%和12.0%.本文方法在继承了稀疏卷积高效特点的同时还实现了跟踪精度的提高. 展开更多
关键词 点云理解 目标跟踪 机器视觉 稀疏卷积 特征融合
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部