We study the propagation and interaction of ion-acoustic solitary waves in a simple two-dimensional plasma by using the extended Poincare Lighthill-Kuo perturbation method. We consider the interaction between two ion-...We study the propagation and interaction of ion-acoustic solitary waves in a simple two-dimensional plasma by using the extended Poincare Lighthill-Kuo perturbation method. We consider the interaction between two ion-acoustic solitary waves with different propagation directions in such a system, and obtain two Korteweg-de Vries equations for small but finite amplitude solitary waves along both ξ and η trajectories. The effects of the ratio of ion temperature σ the ratio of heat capacity γ and the colliding angle a on the amplitude, the width of the new nonlinear wave created by the collision between two solitary waves are studied. The effects of these parameters on both the colliding solitary waves are examined as well. It is found that all the above-mentioned parameters have significant effects on the properties of these nonlinear waves.展开更多
This paper discusses the existence of ion-acoustic solitary waves and their interaction in a dense quantum electron positron-ion plasma by using the quantum hydrodynamic equations. The extended Poincar^-Lighthill-Kuo ...This paper discusses the existence of ion-acoustic solitary waves and their interaction in a dense quantum electron positron-ion plasma by using the quantum hydrodynamic equations. The extended Poincar^-Lighthill-Kuo perturbation method is used to derive the Korteweg-de Vries equations for quantum ion-acoustic solitary waves in this plasma. The effects of the ratio of positrons to ions unperturbation number density p and the quantum diffraction parameter He (Hp) on the newly formed wave during interaction, and the phase shift of the colliding solitary waves are studied. It is found that the interaction between two solitary waves fits linear superposition principle and these plasma parameters have significantly influence on the newly formed wave and phase shift of the colliding solitary waves. The investigations should be useful for understanding the propagation and interaction of ion-acoustic solitary waves in dense astrophysical plasmas (such as white dwarfs) as well as in intense laser-solid matter interaction experiments.展开更多
This paper investigates the collision between two nonlinear waves with arbitrary angle in two-dimensional nonlinear lattice. By using the extended Poincarge-Lighthill-Kuo perturbation method, it obtains two Korteweg-d...This paper investigates the collision between two nonlinear waves with arbitrary angle in two-dimensional nonlinear lattice. By using the extended Poincarge-Lighthill-Kuo perturbation method, it obtains two Korteweg-de Vries equations for nonlinear waves in both the ζ and η directions, respectively, and derives the analytical phase shifts after the collision of two nonlinear waves. Finally, the solution of u(υ) up to O(ε^3) order is given.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 10875098 and 10575082, the Natural Science Foundation of Gansu Province under Grant No 3ZS061-A25-013, the Natural Science Foundation of Northwest Normal University under Grant No NWNU-KJCXGC-03-17.
文摘We study the propagation and interaction of ion-acoustic solitary waves in a simple two-dimensional plasma by using the extended Poincare Lighthill-Kuo perturbation method. We consider the interaction between two ion-acoustic solitary waves with different propagation directions in such a system, and obtain two Korteweg-de Vries equations for small but finite amplitude solitary waves along both ξ and η trajectories. The effects of the ratio of ion temperature σ the ratio of heat capacity γ and the colliding angle a on the amplitude, the width of the new nonlinear wave created by the collision between two solitary waves are studied. The effects of these parameters on both the colliding solitary waves are examined as well. It is found that all the above-mentioned parameters have significant effects on the properties of these nonlinear waves.
基金supported by the Research Foundation for Young Teachers of Hexi University,China (Grant No. QN-201004)
文摘This paper discusses the existence of ion-acoustic solitary waves and their interaction in a dense quantum electron positron-ion plasma by using the quantum hydrodynamic equations. The extended Poincar^-Lighthill-Kuo perturbation method is used to derive the Korteweg-de Vries equations for quantum ion-acoustic solitary waves in this plasma. The effects of the ratio of positrons to ions unperturbation number density p and the quantum diffraction parameter He (Hp) on the newly formed wave during interaction, and the phase shift of the colliding solitary waves are studied. It is found that the interaction between two solitary waves fits linear superposition principle and these plasma parameters have significantly influence on the newly formed wave and phase shift of the colliding solitary waves. The investigations should be useful for understanding the propagation and interaction of ion-acoustic solitary waves in dense astrophysical plasmas (such as white dwarfs) as well as in intense laser-solid matter interaction experiments.
基金Project supported by the National Natural Science Foundation of China under (Grant Nos 10575082 and 10247008)the Scientific Research Foundation (SRF) for the Returned Overseas Chinese Scholars (ROCF), State Education Ministry (SEM)
文摘This paper investigates the collision between two nonlinear waves with arbitrary angle in two-dimensional nonlinear lattice. By using the extended Poincarge-Lighthill-Kuo perturbation method, it obtains two Korteweg-de Vries equations for nonlinear waves in both the ζ and η directions, respectively, and derives the analytical phase shifts after the collision of two nonlinear waves. Finally, the solution of u(υ) up to O(ε^3) order is given.