为了提高交通标志识别的速度和精度,提出了一种采用Yolov4(You only look once version4)深度学习框架的交通标志识别方法,并将该方法与SSD(single shot multi box detector)和Yolov3(You only look once version 3)算法进行对比,所提...为了提高交通标志识别的速度和精度,提出了一种采用Yolov4(You only look once version4)深度学习框架的交通标志识别方法,并将该方法与SSD(single shot multi box detector)和Yolov3(You only look once version 3)算法进行对比,所提算法模型参数量显著增加。进一步对Yolov4的主干特征提取网络和多尺度输出进行调整,提出轻量化的Yolov4算法。仿真实验表明,此算法能够快速有效检测交通标志,具有实时性和适用性。展开更多
文摘为了提高交通标志识别的速度和精度,提出了一种采用Yolov4(You only look once version4)深度学习框架的交通标志识别方法,并将该方法与SSD(single shot multi box detector)和Yolov3(You only look once version 3)算法进行对比,所提算法模型参数量显著增加。进一步对Yolov4的主干特征提取网络和多尺度输出进行调整,提出轻量化的Yolov4算法。仿真实验表明,此算法能够快速有效检测交通标志,具有实时性和适用性。