期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多步恢复力反馈的实时混合试验Runge-Kutta算法
1
作者 孟丽岩 王涛 +1 位作者 韩木逸 曾聪 《黑龙江科技大学学报》 CAS 2019年第2期230-238,共9页
为提高显式数值积分在慢速及实时混合试验中的精度,采用经典Runge-Kutta(RK)算法求解结构运动方程。针对单自由度线性体系,采用放大矩阵谱半径的方法分析RK算法的稳定性和精度。提出单步恢复力反馈法(SRK)和多步恢复力反馈法(MRK)两种R... 为提高显式数值积分在慢速及实时混合试验中的精度,采用经典Runge-Kutta(RK)算法求解结构运动方程。针对单自由度线性体系,采用放大矩阵谱半径的方法分析RK算法的稳定性和精度。提出单步恢复力反馈法(SRK)和多步恢复力反馈法(MRK)两种RK算法在实时混合试验中的实现方法,并分别对单自由度线性结构和多自由非线性结构开展混合试验数值仿真。结果表明,与传统中心差分法和实时中心差分法相比,RK算法具有更高的稳定性界限和精度。随着阻尼比的增大,RK算法稳定界限呈波动变化趋势,整体稳定界限保持在2.6~3.0;当Ω为0~0.75时,算法数值阻尼比和周期失真率接近于零。随着试验子结构刚度增加,单步恢复力反馈法计算精度急剧降低,多步恢复力反馈法继承了经典RK算法优良的数值性能,具有较高的计算精度。 展开更多
关键词 混合试验 Runge-Kutta算法 稳定性 精度 多步恢复力反馈
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部