在能源互联网快速发展的背景下,研究分析了综合能源系统的多元负荷预测模型及理论方法.针对传统ARIMA(Autoregressive Moving Average Model,ARMA)模型仅能处理线性关系的问题,将ARIMA模型与LSTM(Long-Short Term Memory,LSTM)网络模型...在能源互联网快速发展的背景下,研究分析了综合能源系统的多元负荷预测模型及理论方法.针对传统ARIMA(Autoregressive Moving Average Model,ARMA)模型仅能处理线性关系的问题,将ARIMA模型与LSTM(Long-Short Term Memory,LSTM)网络模型结合,提出并建立了ARIMA-LSTM模型.该模型不仅兼容冷、热、气、电等多元负荷的预测,并且可以用于风速、辐射照度等数据的预测,有较好的适应性和预测精度.展开更多
文摘在能源互联网快速发展的背景下,研究分析了综合能源系统的多元负荷预测模型及理论方法.针对传统ARIMA(Autoregressive Moving Average Model,ARMA)模型仅能处理线性关系的问题,将ARIMA模型与LSTM(Long-Short Term Memory,LSTM)网络模型结合,提出并建立了ARIMA-LSTM模型.该模型不仅兼容冷、热、气、电等多元负荷的预测,并且可以用于风速、辐射照度等数据的预测,有较好的适应性和预测精度.