As natural photosynthesis does, direct conversion of solar energy into the storable form of chemical energy is an intriguing technology for solar energy utilization. Due to increasing concerns of energy and environmen...As natural photosynthesis does, direct conversion of solar energy into the storable form of chemical energy is an intriguing technology for solar energy utilization. Due to increasing concerns of energy and environmental problems caused by the consumption of fossil fuels, production of chemical solar fuels (such as hydrogen, methanol or methane,etc) by artificial photosynthesis, namely photocatalytic splitting of water or reduction of CO2, has been a hot research topic in recent years.展开更多
The photocatalytic activity of a semiconductor‐based photocatalyst largely depends on the semiconductor’s intrinsic crystal and electronic properties.We have prepared two types of La and Cr co‐doped SrTiO3photocata...The photocatalytic activity of a semiconductor‐based photocatalyst largely depends on the semiconductor’s intrinsic crystal and electronic properties.We have prepared two types of La and Cr co‐doped SrTiO3photocatalysts(SrTiO3(La,Cr))using the polymerized complex method(PCM)and sol‐gel hydrothermal method(SHM).Under?>420‐nm visible light irradiation,only the Pt‐loaded SrTiO3(La,Cr)prepared by the SHM showed efficient photocatalytic activities for both H2evolution in the presence of an I?sacrificial reagent and for Z‐scheme overall water splitting when it was coupled with the Pt‐loaded WO3in the presence of I?and IO3?as the shuttle redox mediator.The superior photocatalytic activity of SrTiO3(La,Cr)prepared by the SHM has been ascribed to its more negative conduction‐band position,higher carrier concentration,and higher carrier mobility,demonstrating that the design and synthesis of an H2‐evolution photocatalyst with appropriate electronic properties is crucial for achieving Z‐scheme overall water splitting.展开更多
The development of stable and efficient visible light-absorbing oxide-based semiconductor photocatalysts is a desirable task for solar water splitting applications.Recently,we proposed that the low photocurrent densit...The development of stable and efficient visible light-absorbing oxide-based semiconductor photocatalysts is a desirable task for solar water splitting applications.Recently,we proposed that the low photocurrent density in film-based BiFeO_(3)(BFO)is due to charge recombination at the interface of the domain walls,which could be largely reduced in particulate photocatalyst systems.To demonstrate this hypothesis,in this work we synthesized particulate BFO and Mn-doped BiFeO_(3)(Mn-BFO)by the sol-gel method.Photocatalytic water oxidation tests showed that pure BFO had an intrinsic photocatalytic oxygen evolution reaction(OER)activity of 70μmol h^(-1) g^(-1),while BFO-2,with an optimum amount of Mn doping(0.05%),showed an OER activity of 255μmol h^(-1) g^(-1) under visible light(λ≥420 nm)irradiation.The bandgap of Mn-doped BFO could be reduced from 2.1 to 1.36 eV by varying the amount of Mn doping.Density functional theory(DFT)calculations suggested that surface Fe(rather than Mn)species serve as the active sites for water oxidation,because the overpotential for water oxidation on Fe species after Mn doping is 0.51 V,which is the lowest value measured for the different Fe and Mn species examined in this study.The improved photocatalytic water oxidation activity of Mn-BFO is ascribed to the synergistic effect of the bandgap narrowing,which increases the absorption of visible light,reduces the activation energy of water oxidation,and inhibits the recombination of photogenerated charges.This work demonstrates that Mn doping is an effective strategy to enhance the intrinsic photocatalytic water oxidation activity of particulate ferroelectric BFO photocatalysts.展开更多
文摘As natural photosynthesis does, direct conversion of solar energy into the storable form of chemical energy is an intriguing technology for solar energy utilization. Due to increasing concerns of energy and environmental problems caused by the consumption of fossil fuels, production of chemical solar fuels (such as hydrogen, methanol or methane,etc) by artificial photosynthesis, namely photocatalytic splitting of water or reduction of CO2, has been a hot research topic in recent years.
基金supported by the National Natural Science Foundation of China (21763013, 21473189)the National Key Research and Development Program of China (2017YFA0204804)~~
文摘The photocatalytic activity of a semiconductor‐based photocatalyst largely depends on the semiconductor’s intrinsic crystal and electronic properties.We have prepared two types of La and Cr co‐doped SrTiO3photocatalysts(SrTiO3(La,Cr))using the polymerized complex method(PCM)and sol‐gel hydrothermal method(SHM).Under?>420‐nm visible light irradiation,only the Pt‐loaded SrTiO3(La,Cr)prepared by the SHM showed efficient photocatalytic activities for both H2evolution in the presence of an I?sacrificial reagent and for Z‐scheme overall water splitting when it was coupled with the Pt‐loaded WO3in the presence of I?and IO3?as the shuttle redox mediator.The superior photocatalytic activity of SrTiO3(La,Cr)prepared by the SHM has been ascribed to its more negative conduction‐band position,higher carrier concentration,and higher carrier mobility,demonstrating that the design and synthesis of an H2‐evolution photocatalyst with appropriate electronic properties is crucial for achieving Z‐scheme overall water splitting.
文摘The development of stable and efficient visible light-absorbing oxide-based semiconductor photocatalysts is a desirable task for solar water splitting applications.Recently,we proposed that the low photocurrent density in film-based BiFeO_(3)(BFO)is due to charge recombination at the interface of the domain walls,which could be largely reduced in particulate photocatalyst systems.To demonstrate this hypothesis,in this work we synthesized particulate BFO and Mn-doped BiFeO_(3)(Mn-BFO)by the sol-gel method.Photocatalytic water oxidation tests showed that pure BFO had an intrinsic photocatalytic oxygen evolution reaction(OER)activity of 70μmol h^(-1) g^(-1),while BFO-2,with an optimum amount of Mn doping(0.05%),showed an OER activity of 255μmol h^(-1) g^(-1) under visible light(λ≥420 nm)irradiation.The bandgap of Mn-doped BFO could be reduced from 2.1 to 1.36 eV by varying the amount of Mn doping.Density functional theory(DFT)calculations suggested that surface Fe(rather than Mn)species serve as the active sites for water oxidation,because the overpotential for water oxidation on Fe species after Mn doping is 0.51 V,which is the lowest value measured for the different Fe and Mn species examined in this study.The improved photocatalytic water oxidation activity of Mn-BFO is ascribed to the synergistic effect of the bandgap narrowing,which increases the absorption of visible light,reduces the activation energy of water oxidation,and inhibits the recombination of photogenerated charges.This work demonstrates that Mn doping is an effective strategy to enhance the intrinsic photocatalytic water oxidation activity of particulate ferroelectric BFO photocatalysts.