This paper presents a high resolution, process/temperature variation tolerant received signal strength indicator (RSSI) for wireless networks for industrial automation process automation (WIA-PA) transceiver fabri...This paper presents a high resolution, process/temperature variation tolerant received signal strength indicator (RSSI) for wireless networks for industrial automation process automation (WIA-PA) transceiver fabri- cated in 0.18μm CMOS technology. The active area of the RSSI is 0.24 mm2. Measurement results show that the proposed RSSI has a dynamic range more than 70 dB and the linearity error is within ±0.5 dB for an input power from -70 to 0 dBm (dBm to 50 Ω), the corresponding output voltage is from 0.81 to 1.657 V and the RSSI slope is 12.1 mV/dB while consuming all of 2 mA from a 1.8 V power supply. Furthermore, by the help of the integrated compensation circuit, the proposed RSSI shows the temperature error within ± 1.5 dB from -40 to 85 ℃, and process variation error within ±0.25 dB, which exhibits good temperature-independence and excellent robustness against process variation characteristics.展开更多
基金supported by the National High Technology Research and Development Program of China(No.2011AA040102)
文摘This paper presents a high resolution, process/temperature variation tolerant received signal strength indicator (RSSI) for wireless networks for industrial automation process automation (WIA-PA) transceiver fabri- cated in 0.18μm CMOS technology. The active area of the RSSI is 0.24 mm2. Measurement results show that the proposed RSSI has a dynamic range more than 70 dB and the linearity error is within ±0.5 dB for an input power from -70 to 0 dBm (dBm to 50 Ω), the corresponding output voltage is from 0.81 to 1.657 V and the RSSI slope is 12.1 mV/dB while consuming all of 2 mA from a 1.8 V power supply. Furthermore, by the help of the integrated compensation circuit, the proposed RSSI shows the temperature error within ± 1.5 dB from -40 to 85 ℃, and process variation error within ±0.25 dB, which exhibits good temperature-independence and excellent robustness against process variation characteristics.