The one-to-multiparty quantum secret sharing scheme [Phys. Rev. A 71 (2005) 044301] proposed recently is extended to a multiparty-to-multiparty case. Furthermore, the continuous variable operations are employed in t...The one-to-multiparty quantum secret sharing scheme [Phys. Rev. A 71 (2005) 044301] proposed recently is extended to a multiparty-to-multiparty case. Furthermore, the continuous variable operations are employed in the extended scheme to replace the specific discrete unitary operations used in the original scheme. The complete randomicity of the continuous variable characterizing the unitary operations can ensure the security of secret sharing. Moreover, the present scheme is compared with the recent similar scheme [Phys. Rev. A 72 (2005) 012304]. It is found that the efficiency of the present scheme is n times of that of the previous one.展开更多
An experimental feasible scheme of multiparty secret sharing of classical messages is proposed, based on a cavity quantum electrodynamic system. The secret messages are imposed on atomic Bell states initially in the s...An experimental feasible scheme of multiparty secret sharing of classical messages is proposed, based on a cavity quantum electrodynamic system. The secret messages are imposed on atomic Bell states initially in the sender's possession by local unitary operations. By swapping quantum entanglement of atomic Bell states, the secret messages are split into several parts and each part is distributed to a separate party. In this case, any subset of the entire party group can not read out the secret message but the entirety via mutual cooperations. In this scheme, to discriminate atomic Bell states, additional classical fields are employed besides the same highlydetuned single-mode cavities used to prepare atomic Bell states. This scheme is insensitive to the cavity decay and the thermal field, and usual joint Bell-state measurements are unnecessary.展开更多
We propose a tripartite scheme for probabilistically teleporting an arbitrary two-qubit state with a fourqubit cluster-class state and a Bell-class state as the quantum channels. In the scheme, the sender and the cont...We propose a tripartite scheme for probabilistically teleporting an arbitrary two-qubit state with a fourqubit cluster-class state and a Bell-class state as the quantum channels. In the scheme, the sender and the controller make Bell-state measurements (BSMs) on their respective qubit pairs. With their measurement results, the receiver can reconstruct the original state probabilistically by introducing two auxiliary particles and making appropriate unitary operations and positive operator-valued measure (POVM) instead of usual projective measurement. Moreover, the total success probability and classical communication cost of the present protocol are also worked out.展开更多
基金Supported by the programme for New Century Excellent Talents at the University of China under Grant No NCET-06-0554, the National Natural Science Foundation of China under Grant No 60677001, the Science-Technology Fund of Anhui Province for 0utstanding Youth under Grant No 06042087, the Key Fund of the Ministry of Education of China under Grant No 206063, the Postgraduate Innovation Research Plan from Anhui University under Grant No 20073039, the Natural Science Foundation of Guangdong Province under Grant Nos 06300345 and 7007806, and Natural Science Foundation of Hubei Province under Grant No 2006ABA354.
文摘The one-to-multiparty quantum secret sharing scheme [Phys. Rev. A 71 (2005) 044301] proposed recently is extended to a multiparty-to-multiparty case. Furthermore, the continuous variable operations are employed in the extended scheme to replace the specific discrete unitary operations used in the original scheme. The complete randomicity of the continuous variable characterizing the unitary operations can ensure the security of secret sharing. Moreover, the present scheme is compared with the recent similar scheme [Phys. Rev. A 72 (2005) 012304]. It is found that the efficiency of the present scheme is n times of that of the previous one.
基金Supported by the National Natural Science Foundation of China under Grant No 10304022, the Science-Technology Fund of Anhui Province for 0utstanding Youth under Grant No 06042087, the General Fund of the Educational committee of Anhui Province under Grant No. 2006KJ260B, and the Key Fund of the Ministry of Education of China under Grant No 206063. To whom correspondence should be addressed.
文摘An experimental feasible scheme of multiparty secret sharing of classical messages is proposed, based on a cavity quantum electrodynamic system. The secret messages are imposed on atomic Bell states initially in the sender's possession by local unitary operations. By swapping quantum entanglement of atomic Bell states, the secret messages are split into several parts and each part is distributed to a separate party. In this case, any subset of the entire party group can not read out the secret message but the entirety via mutual cooperations. In this scheme, to discriminate atomic Bell states, additional classical fields are employed besides the same highlydetuned single-mode cavities used to prepare atomic Bell states. This scheme is insensitive to the cavity decay and the thermal field, and usual joint Bell-state measurements are unnecessary.
基金Supported by the Foundation for College Excellent Young Talents of Anhui Province under Grant Nos.2012SQRL205 and 2012SQRL206the Foundation for Academic Youth of Anhui Universitythe Higher Education Natural Science Foundation of Anhui Province under Grant No.KJ2010B383
文摘We propose a tripartite scheme for probabilistically teleporting an arbitrary two-qubit state with a fourqubit cluster-class state and a Bell-class state as the quantum channels. In the scheme, the sender and the controller make Bell-state measurements (BSMs) on their respective qubit pairs. With their measurement results, the receiver can reconstruct the original state probabilistically by introducing two auxiliary particles and making appropriate unitary operations and positive operator-valued measure (POVM) instead of usual projective measurement. Moreover, the total success probability and classical communication cost of the present protocol are also worked out.