期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于自适应图学习的半监督特征选择
被引量:
1
1
作者
江兵兵
何文达
+3 位作者
吴兴宇
项俊浩
洪立斌
盛伟国
《电子学报》
EI
CAS
CSCD
北大核心
2022年第7期1643-1652,共10页
随着数据特征维数的增加,如何在少量有标签和大量无标签高维样本的情况下选择相关的特征子集已成为特征选择领域的热点问题.针对现有半监督特征选择算法直接忽略特征选择与局部结构学习之间的相互作用,从而难以有效获取样本分布结构的问...
随着数据特征维数的增加,如何在少量有标签和大量无标签高维样本的情况下选择相关的特征子集已成为特征选择领域的热点问题.针对现有半监督特征选择算法直接忽略特征选择与局部结构学习之间的相互作用,从而难以有效获取样本分布结构的问题,本文提出了一种基于自适应图学习的半监督特征选择(Semi-supervised Feature Selection with Adaptive Graph learning,SFSAG)算法.利用标签传播将特征空间的稀疏投影学习和近邻图的构建有效地结合起来,实现在选择相关特征的同时还能学习样本的局部结构;自适应地利用样本在投影特征空间中的相似性信息构建可靠的近邻图,从而有效降低噪声特征的干扰并选择更具判别性的特征子集.多种数据集上的实验验证了SFSAG的有效性及其相对于现有半监督特征选择算法的优越性.
展开更多
关键词
特征选择
自适应图学习
半监督学习
标签传播
L2
1稀疏正则化
下载PDF
职称材料
题名
基于自适应图学习的半监督特征选择
被引量:
1
1
作者
江兵兵
何文达
吴兴宇
项俊浩
洪立斌
盛伟国
机构
杭州师范大学信息科学与技术学院
中国科学技术大学计算机科学与技术学院
出处
《电子学报》
EI
CAS
CSCD
北大核心
2022年第7期1643-1652,共10页
基金
国家自然科学基金(No.62006065,No.61873082)
杭州师范大学科研启动项目(No.20204003)。
文摘
随着数据特征维数的增加,如何在少量有标签和大量无标签高维样本的情况下选择相关的特征子集已成为特征选择领域的热点问题.针对现有半监督特征选择算法直接忽略特征选择与局部结构学习之间的相互作用,从而难以有效获取样本分布结构的问题,本文提出了一种基于自适应图学习的半监督特征选择(Semi-supervised Feature Selection with Adaptive Graph learning,SFSAG)算法.利用标签传播将特征空间的稀疏投影学习和近邻图的构建有效地结合起来,实现在选择相关特征的同时还能学习样本的局部结构;自适应地利用样本在投影特征空间中的相似性信息构建可靠的近邻图,从而有效降低噪声特征的干扰并选择更具判别性的特征子集.多种数据集上的实验验证了SFSAG的有效性及其相对于现有半监督特征选择算法的优越性.
关键词
特征选择
自适应图学习
半监督学习
标签传播
L2
1稀疏正则化
Keywords
feature selection
adaptive graph learning
semi-supervised learning
label propagation
L2
1sparse regularization
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于自适应图学习的半监督特征选择
江兵兵
何文达
吴兴宇
项俊浩
洪立斌
盛伟国
《电子学报》
EI
CAS
CSCD
北大核心
2022
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部