为提升语音情感识别的能力,本研究提出一种基于稀疏核主成分分析(Sparse Kernel Principal Component Analysis,SKPCA)的方法。该方法结合核主成分分析以及稀疏表示的方法,能够同时满足特征降维和样本稀疏,起到降维和降噪的作用。本研...为提升语音情感识别的能力,本研究提出一种基于稀疏核主成分分析(Sparse Kernel Principal Component Analysis,SKPCA)的方法。该方法结合核主成分分析以及稀疏表示的方法,能够同时满足特征降维和样本稀疏,起到降维和降噪的作用。本研究首先利用openSMILE工具包提取情感语音样本的声学特征及其统计特征用于情感识别,然后介绍SKPCA的算法原理及推导过程,最后使用多种分类器在柏林库做了大量的实验,实验结果表明,使用SKPCA方法可取得较好的识别结果。展开更多
文摘为提升语音情感识别的能力,本研究提出一种基于稀疏核主成分分析(Sparse Kernel Principal Component Analysis,SKPCA)的方法。该方法结合核主成分分析以及稀疏表示的方法,能够同时满足特征降维和样本稀疏,起到降维和降噪的作用。本研究首先利用openSMILE工具包提取情感语音样本的声学特征及其统计特征用于情感识别,然后介绍SKPCA的算法原理及推导过程,最后使用多种分类器在柏林库做了大量的实验,实验结果表明,使用SKPCA方法可取得较好的识别结果。