The area studied had developed into an inactive continental margin on the western edge of the Yangtze plate during the Jinning period in Proterozoic time.The Yangtze plate drifted from the south northwards in Paleozoi...The area studied had developed into an inactive continental margin on the western edge of the Yangtze plate during the Jinning period in Proterozoic time.The Yangtze plate drifted from the south northwards in Paleozoic time and reached about 9oS between Late Cambrian and Early Ordovician .The alkalic olivine basalt magma,which was produced via 2-5% partial melting of a fractionated mantle and was accumulated in a deep-seated magma chamber near the Moho.found its way upward along the reviving boundary faults into the upper crust.Two types of layered intrusions,basic and ultrabasic-basic,crystallized from the magma at different pressures.The high initial oxygen fugacity of the magma provides a favorable condition for the deposition of Fe-Ti oxides in the early stage of magmaevolution,resulting in large-sized early magmatic deposits.Magma crystallization may have been interrupted and repeated as a result of pulsative magma influx,giving rise to rhythmic cycles (including the corresponding V-Ti-magnetite ore beds).The magma was stratified owing to double diffusion at the crystallization front and convection was thus occasioned by the density gradient.This has greatly complicated the sequence as would be expected from normal crystallization.展开更多
文摘The area studied had developed into an inactive continental margin on the western edge of the Yangtze plate during the Jinning period in Proterozoic time.The Yangtze plate drifted from the south northwards in Paleozoic time and reached about 9oS between Late Cambrian and Early Ordovician .The alkalic olivine basalt magma,which was produced via 2-5% partial melting of a fractionated mantle and was accumulated in a deep-seated magma chamber near the Moho.found its way upward along the reviving boundary faults into the upper crust.Two types of layered intrusions,basic and ultrabasic-basic,crystallized from the magma at different pressures.The high initial oxygen fugacity of the magma provides a favorable condition for the deposition of Fe-Ti oxides in the early stage of magmaevolution,resulting in large-sized early magmatic deposits.Magma crystallization may have been interrupted and repeated as a result of pulsative magma influx,giving rise to rhythmic cycles (including the corresponding V-Ti-magnetite ore beds).The magma was stratified owing to double diffusion at the crystallization front and convection was thus occasioned by the density gradient.This has greatly complicated the sequence as would be expected from normal crystallization.