期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于全局频域池化的行为识别算法
1
作者 贾志超 张海超 +3 位作者 张闯 颜蒙蒙 储金祺 颜之岳 《计算机应用研究》 CSCD 北大核心 2024年第9期2867-2873,共7页
目前基于3D-ConvNet的行为识别算法普遍使用全局平均池化(global average pooling,GAP)压缩特征信息,但会产生信息损失、信息冗余和网络过拟合等问题。为了解决上述问题,更好地保留卷积层提取到的高级语义信息,提出了基于全局频域池化(g... 目前基于3D-ConvNet的行为识别算法普遍使用全局平均池化(global average pooling,GAP)压缩特征信息,但会产生信息损失、信息冗余和网络过拟合等问题。为了解决上述问题,更好地保留卷积层提取到的高级语义信息,提出了基于全局频域池化(global frequency domain pooling,GFDP)的行为识别算法。首先,根据离散余弦变换(discrete cosine transform,DCT)看出,GAP是频域中特征分解的一种特例,从而引入更多频率分量增加特征通道间的特异性,减少信息压缩后的信息冗余;其次,为了更好地抑制过拟合问题,引入卷积层的批标准化策略,并将其拓展在以ERB(efficient residual block)-Res3D为骨架的行为识别模型的全连接层以优化数据分布;最后,将该方法在UCF101数据集上进行验证。结果表明,模型计算量为3.5 GFlops,参数量为7.4 M,最终的识别准确率在ERB-Res3D模型的基础上提升了3.9%,在原始Res3D模型基础上提升了17.4%,高效实现了更加准确的行为识别结果。 展开更多
关键词 3D-ConvNet 人体行为识别 全局平均池化 离散余弦变换
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部