测试样本和训练样本集的匹配是基于学习的超分辨率算法中关键问题之一。本文方法通过将低分辨率的观察样本映射到高维的核空间中,实现测试样本和训练样本集的准确匹配,避免了基于学习的超分辨率算法中错误匹配问题,提高生成图像的质量...测试样本和训练样本集的匹配是基于学习的超分辨率算法中关键问题之一。本文方法通过将低分辨率的观察样本映射到高维的核空间中,实现测试样本和训练样本集的准确匹配,避免了基于学习的超分辨率算法中错误匹配问题,提高生成图像的质量。该算法包括:测试样本对训练样本集进行核主成分分析(kernel principal com-ponents analysis,KPCA);利用距离约束算法得到在输入空间中的原像;最后将新生成的图像块进行重组,得到高分辨率的图像。在USPS数据集上进行的实验验证和对比分析表明:基于KPCA的图像超分辨率方法能够取得较好的超分辨率效果。展开更多
文摘测试样本和训练样本集的匹配是基于学习的超分辨率算法中关键问题之一。本文方法通过将低分辨率的观察样本映射到高维的核空间中,实现测试样本和训练样本集的准确匹配,避免了基于学习的超分辨率算法中错误匹配问题,提高生成图像的质量。该算法包括:测试样本对训练样本集进行核主成分分析(kernel principal com-ponents analysis,KPCA);利用距离约束算法得到在输入空间中的原像;最后将新生成的图像块进行重组,得到高分辨率的图像。在USPS数据集上进行的实验验证和对比分析表明:基于KPCA的图像超分辨率方法能够取得较好的超分辨率效果。