全变分(Total Variation,TV)变换作为一种常用的稀疏变换模型,因其在保持图像边缘信息方面具有明显的优势,已经被应用到图像去噪问题中。然而,它通常会产生阶梯伪影。为了克服这个缺点,在该文中,我们引入交叠组合稀疏全变分(Overlapping...全变分(Total Variation,TV)变换作为一种常用的稀疏变换模型,因其在保持图像边缘信息方面具有明显的优势,已经被应用到图像去噪问题中。然而,它通常会产生阶梯伪影。为了克服这个缺点,在该文中,我们引入交叠组合稀疏全变分(Overlapping Group Sparsity Total Variation,OGSTV)代替传统TV变换模型。为了求解该OGSTV去噪模型,我们提出一种基于快速傅里叶变换(Fast Fourier Transform,FFT)和split Bregman算法的快速OGSTV去噪方法。实验结果表明,引入快速傅里叶变换理论后,图像去噪时间明显减少;与其他已有比较好的算法相比,可以获得更好的图像质量,阶梯效应明显改善。展开更多
文摘全变分(Total Variation,TV)变换作为一种常用的稀疏变换模型,因其在保持图像边缘信息方面具有明显的优势,已经被应用到图像去噪问题中。然而,它通常会产生阶梯伪影。为了克服这个缺点,在该文中,我们引入交叠组合稀疏全变分(Overlapping Group Sparsity Total Variation,OGSTV)代替传统TV变换模型。为了求解该OGSTV去噪模型,我们提出一种基于快速傅里叶变换(Fast Fourier Transform,FFT)和split Bregman算法的快速OGSTV去噪方法。实验结果表明,引入快速傅里叶变换理论后,图像去噪时间明显减少;与其他已有比较好的算法相比,可以获得更好的图像质量,阶梯效应明显改善。