ABX3-type organic-inorganic hybrid halide perovskite materials have been recognized as promising candidates for optoelectronic applications. However, poor stability of organic-inorganic hybrid perovskite hinders their...ABX3-type organic-inorganic hybrid halide perovskite materials have been recognized as promising candidates for optoelectronic applications. However, poor stability of organic-inorganic hybrid perovskite hinders their forward long-term utilization and hence an effective strategy is needed to replace the organic part with an inorganic cation. Herein, all inorganic CsPbI3 nanowires with a di- ameter of 50-100 nm are synthesized on fluorine-doped tin oxide glass via a simple solution-dipping process, which are further transformed into CsPbBr3 nanowires through a so- lution-phase halide exchange method. A phase change from non-perovskite to perovskite structure is observed during the ion substitution process of I- by Br-, which is elaborated by X-ray diffraction, absorption and photoluminescence spectra. We for the first time apply the as-formed CsPbI3 and CsPbBr3 nanowires into perovskite solar cells, yielding power conversion efficiency of 0.11% and 1.21%, respectively. The inorganic CsPbBr3 nanowire solar cell shows impressive sta- bility which still remains 99% of the initial power conversion efficiency even after 5500 h aging.展开更多
Two-dimensional(2D) ZnO nanosheet arrays were prepared via vanadium(V)-doping assisted hydrothermal method, and then the nanosheet was successfully converted to a nanorod-on-nanosheet ZnO hierarchical structure by tre...Two-dimensional(2D) ZnO nanosheet arrays were prepared via vanadium(V)-doping assisted hydrothermal method, and then the nanosheet was successfully converted to a nanorod-on-nanosheet ZnO hierarchical structure by treating with Na_2S solution and subsequent hydrothermal reaction. Hierarchical films with different nanorod growth time(1–8h) were prepared and their photovoltaic properties were also investigated after electrodeposition of CdSe quantum dots. For the hierarchical nanorod-on-nanosheet ZnO films, increasing the ZnO nanorod growth time can enormously enlarge the length of branched nanorods and light-scattering ability, resulting in better light-harvesting efficiency and higher photo-generated electron concentration, which leads to higher short-circuit current density(J_(sc)) and open-circuit voltage(V_(oc)). However,further increasing nanorod growth time to 8h leads to the over-dense coverage of nanorods, which is harmful for light-harvesting efficiency and leads to severe electron recombination, eventually diminishes the power conversion efficiency(PCE). With the optimized nanorod modification and Cu_2S counter electrode, the PCE reaches a maximum value of 4.26%, which to the best of our knowledge, is among the highest PCE record for CdSe sensitized solar cells based on ZnO photoanodes.展开更多
基金supported by Guangdong Laboratory for Lingnan Modern Agriculture(NZ2021030)the National Natural Science Foundation of China(21975083,U21A20310,51732004,22122805,and 22075090)。
基金supported by the National Natural Science Foundation of China(91433109 and 51472274)Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2016)+2 种基金the Program of Guangzhou Science and Technology(201504010031)the Fundamental Research Funds for the Central Universitiesthe Natural Science Foundation of Guangdong Province (S2013030013474 and 2014A030313148)
文摘ABX3-type organic-inorganic hybrid halide perovskite materials have been recognized as promising candidates for optoelectronic applications. However, poor stability of organic-inorganic hybrid perovskite hinders their forward long-term utilization and hence an effective strategy is needed to replace the organic part with an inorganic cation. Herein, all inorganic CsPbI3 nanowires with a di- ameter of 50-100 nm are synthesized on fluorine-doped tin oxide glass via a simple solution-dipping process, which are further transformed into CsPbBr3 nanowires through a so- lution-phase halide exchange method. A phase change from non-perovskite to perovskite structure is observed during the ion substitution process of I- by Br-, which is elaborated by X-ray diffraction, absorption and photoluminescence spectra. We for the first time apply the as-formed CsPbI3 and CsPbBr3 nanowires into perovskite solar cells, yielding power conversion efficiency of 0.11% and 1.21%, respectively. The inorganic CsPbBr3 nanowire solar cell shows impressive sta- bility which still remains 99% of the initial power conversion efficiency even after 5500 h aging.
基金supported by the National Natural Science Foundation of China(51472274)the Programof Guangzhou Science and Technology(2014J4100016 and 201504010031)+1 种基金the Pearl River S&T Nova Program of Guangzhou(2014J2200025)the Natural Science Foundation of Guangdong Province(S2013030013474)
文摘Two-dimensional(2D) ZnO nanosheet arrays were prepared via vanadium(V)-doping assisted hydrothermal method, and then the nanosheet was successfully converted to a nanorod-on-nanosheet ZnO hierarchical structure by treating with Na_2S solution and subsequent hydrothermal reaction. Hierarchical films with different nanorod growth time(1–8h) were prepared and their photovoltaic properties were also investigated after electrodeposition of CdSe quantum dots. For the hierarchical nanorod-on-nanosheet ZnO films, increasing the ZnO nanorod growth time can enormously enlarge the length of branched nanorods and light-scattering ability, resulting in better light-harvesting efficiency and higher photo-generated electron concentration, which leads to higher short-circuit current density(J_(sc)) and open-circuit voltage(V_(oc)). However,further increasing nanorod growth time to 8h leads to the over-dense coverage of nanorods, which is harmful for light-harvesting efficiency and leads to severe electron recombination, eventually diminishes the power conversion efficiency(PCE). With the optimized nanorod modification and Cu_2S counter electrode, the PCE reaches a maximum value of 4.26%, which to the best of our knowledge, is among the highest PCE record for CdSe sensitized solar cells based on ZnO photoanodes.