期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种基于大语言模型的威胁情报信息抽取方法
1
作者 马冰琦 周盈海 +1 位作者 王梓宇 田志宏 《网络空间安全科学学报》 2024年第2期36-46,共11页
随着网络攻防对抗日益激烈,威胁情报的深度挖掘与有效利用成为提升网络安全防御策略的关键。针对传统信息抽取技术在训练数据构建和模型泛化能力方面的局限性,提出了一种基于大语言模型(Large Language Models,LLMs)的威胁情报实体及其... 随着网络攻防对抗日益激烈,威胁情报的深度挖掘与有效利用成为提升网络安全防御策略的关键。针对传统信息抽取技术在训练数据构建和模型泛化能力方面的局限性,提出了一种基于大语言模型(Large Language Models,LLMs)的威胁情报实体及其相互关系抽取框架。借助LLMs的深度语义理解能力,通过提示工程技术准确抽取威胁实体及其相互关系,同时辅以LangChain扩展抽取广度。此外,通过搜索引擎集成提高情报挖掘的时效性和准确性。实验结果显示,该框架在少样本或零样本情境下表现出色,有效减少了误导信息的生成,实现了实时高效的情报知识提取。总体而言,引入一种灵活高效的威胁情报智能化挖掘方法,优化了威胁情报的知识融合过程,提升了网络防御的主动性与先进性。 展开更多
关键词 威胁情报 大语言模型 实体关系抽取 提示工程 LangChain
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部