由于微电网蓄电池工作时的电力特性具有明显的非线性和不规则性,依靠传统数学方法难以准确估计其荷电状态(state of charge,SOC)。针对上述问题,构建了BP神经网络拓扑结构,并采用增强型学习率自适应算法对网络的传统学习模式加以改进,...由于微电网蓄电池工作时的电力特性具有明显的非线性和不规则性,依靠传统数学方法难以准确估计其荷电状态(state of charge,SOC)。针对上述问题,构建了BP神经网络拓扑结构,并采用增强型学习率自适应算法对网络的传统学习模式加以改进,学习时神经网络模型中各神经元间权值得到合理调整,并且提高了误差收敛效率。仿真结果表明,估计结果在预设精度要求的范围之内,平均误差不超过4%,证明经过优化学习算法的BP神经网络模型对蓄电池荷电状态的精确估计是有效可行的。展开更多
文摘由于微电网蓄电池工作时的电力特性具有明显的非线性和不规则性,依靠传统数学方法难以准确估计其荷电状态(state of charge,SOC)。针对上述问题,构建了BP神经网络拓扑结构,并采用增强型学习率自适应算法对网络的传统学习模式加以改进,学习时神经网络模型中各神经元间权值得到合理调整,并且提高了误差收敛效率。仿真结果表明,估计结果在预设精度要求的范围之内,平均误差不超过4%,证明经过优化学习算法的BP神经网络模型对蓄电池荷电状态的精确估计是有效可行的。