期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于CNN-LSTM混合神经网络的光伏发电量预测方法研究 被引量:4
1
作者 王登海 安玥馨 +1 位作者 廖晨博 马家园 《西安石油大学学报(自然科学版)》 北大核心 2024年第1期129-134,共6页
光伏发电量受天气状况,光伏逆变器的质量,光伏组件的清洁度等诸因素影响,其中天气状况的时序性变化较大程度影响发电量。针对不同地区天气时序性变化导致的光伏发电量预测不准确等问题,提出了一种由卷积神经网络(CNN)和长短期记忆(LSTM... 光伏发电量受天气状况,光伏逆变器的质量,光伏组件的清洁度等诸因素影响,其中天气状况的时序性变化较大程度影响发电量。针对不同地区天气时序性变化导致的光伏发电量预测不准确等问题,提出了一种由卷积神经网络(CNN)和长短期记忆(LSTM)混合模型的光伏发电量预测方法,其中通过CNN建立地域之间的空间相关性,LSTM捕捉发电数据之间的时间依赖关系。对神木县红民发电厂和庆城县绿能动力发电厂的光伏发电数据进行测试,实验结果表明,本文所提出的CNN-LSTM混合神经网络方法在光伏发电量预测方面具有较高的准确性和稳定性,比LSTM神经网络模型精度提升4.3%左右。 展开更多
关键词 光伏发电 模型预测 机器学习 CNN LSTM
下载PDF
基于双AR模型的高频地波雷达信号分离算法 被引量:2
2
作者 程浩 马家园 刘国庆 《现代雷达》 CSCD 北大核心 2019年第10期62-67,共6页
高频地波雷达回波信号的频谱主要由一阶峰与二阶谱构成,而这些频谱中蕴含着丰富的海况信息,因此分离其频谱具有重要的理论和现实意义。利用高频地波雷达信号的一阶峰与二阶谱信号的独立性,分别建立不同阶次的自回归(AR)模型。为了估计... 高频地波雷达回波信号的频谱主要由一阶峰与二阶谱构成,而这些频谱中蕴含着丰富的海况信息,因此分离其频谱具有重要的理论和现实意义。利用高频地波雷达信号的一阶峰与二阶谱信号的独立性,分别建立不同阶次的自回归(AR)模型。为了估计对应于一阶峰和二阶谱的AR模型阶数和参数,首先利用自适应原子分裂算法对回波谱进行稀疏估计,得到一阶峰与二阶谱的混合特征根及其由特征根构成的自相关函数的系数;然后,利用特征根的组合构成两个自回归模型,分别计算对应模型的由特征根表示的自相关函数的系数,并将所得到特征根表示的自相关系数逐一进行对比,当所有的特征根表示的自相关系数都近似相等时,则实现对一阶峰和二阶谱的分离;最后,模拟数据及真实的高频地波雷达回波谱信号分离计算验证了该方法的可行性。 展开更多
关键词 高频地波雷达 AR模型 自相关系数 信号分离
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部