股市是金融市场的重要组成部分,对股票价格预测有着重要的意义.同时,深度学习具有强大的数据处理能力,可以解决金融时间序列的复杂性所带来的问题.对此,本文提出一种结合自注意力机制的混合神经网络模型(ATLG).该模型由长短期记忆网络(L...股市是金融市场的重要组成部分,对股票价格预测有着重要的意义.同时,深度学习具有强大的数据处理能力,可以解决金融时间序列的复杂性所带来的问题.对此,本文提出一种结合自注意力机制的混合神经网络模型(ATLG).该模型由长短期记忆网络(LSTM)、门控递归单元(GRU)、自注意力机制构建而成,用于对股票价格的预测.实验结果表明:(1)与LSTM、GRU、RNN-LSTM、RNN-GRU等模型相比, ATLG模型的准确率更高;(2)引入自注意力机制使模型更能聚焦于重要时间点的股票特征信息;(3)通过对比,双层神经网络起到的效果更为明显.(4)通过MACD (moving average convergence and divergence)指标进行回测检验,获得了53%的收益,高于同期沪深300的收益.结果证明了该模型在股票价格预测中的有效性和实用性.展开更多
文摘股市是金融市场的重要组成部分,对股票价格预测有着重要的意义.同时,深度学习具有强大的数据处理能力,可以解决金融时间序列的复杂性所带来的问题.对此,本文提出一种结合自注意力机制的混合神经网络模型(ATLG).该模型由长短期记忆网络(LSTM)、门控递归单元(GRU)、自注意力机制构建而成,用于对股票价格的预测.实验结果表明:(1)与LSTM、GRU、RNN-LSTM、RNN-GRU等模型相比, ATLG模型的准确率更高;(2)引入自注意力机制使模型更能聚焦于重要时间点的股票特征信息;(3)通过对比,双层神经网络起到的效果更为明显.(4)通过MACD (moving average convergence and divergence)指标进行回测检验,获得了53%的收益,高于同期沪深300的收益.结果证明了该模型在股票价格预测中的有效性和实用性.