采用Gleeble-3500热物理模拟机对7050铝合金进行等温热压缩实验,获得了合金在变形温度为300~450℃以及应变速率为0.001~1 s^(-1)条件下的应力应变数据。在此基础上,建立了经灰狼优化算法(Grey wolf optimization,GWO)优化的反向传播神...采用Gleeble-3500热物理模拟机对7050铝合金进行等温热压缩实验,获得了合金在变形温度为300~450℃以及应变速率为0.001~1 s^(-1)条件下的应力应变数据。在此基础上,建立了经灰狼优化算法(Grey wolf optimization,GWO)优化的反向传播神经网络(BPNN)、支持向量机(SVR)和随机森林(RF)模型并验证其预测精度。结果表明:经过GWO优化的BPNN、SVR和RF模型预测精度高于原始模型;GWO-BPNN与GWO-RF模型的预测精度比较接近,且均高于GWO-SVR;在外推数据预测上,GWO-BPNN模型的预测精度更高,在内插数据预测上,GWO-RF模型的预测精度更高。不同机器学习模型对流动应力数据的拟合效果不同,其预测精度也存在差异。展开更多
文摘采用Gleeble-3500热物理模拟机对7050铝合金进行等温热压缩实验,获得了合金在变形温度为300~450℃以及应变速率为0.001~1 s^(-1)条件下的应力应变数据。在此基础上,建立了经灰狼优化算法(Grey wolf optimization,GWO)优化的反向传播神经网络(BPNN)、支持向量机(SVR)和随机森林(RF)模型并验证其预测精度。结果表明:经过GWO优化的BPNN、SVR和RF模型预测精度高于原始模型;GWO-BPNN与GWO-RF模型的预测精度比较接近,且均高于GWO-SVR;在外推数据预测上,GWO-BPNN模型的预测精度更高,在内插数据预测上,GWO-RF模型的预测精度更高。不同机器学习模型对流动应力数据的拟合效果不同,其预测精度也存在差异。