To investigate genes involved in cancer metastasis, mRNA differential display was used to compare the levels of gene expression of two cancer sublines derived from prostate carcinoma cell PC-3M that had different meta...To investigate genes involved in cancer metastasis, mRNA differential display was used to compare the levels of gene expression of two cancer sublines derived from prostate carcinoma cell PC-3M that had different metastatic potentials. The differentially expressed genes were confirmed by Northern blot, and sequenced. The full-length cDNA of a tumor metastasis suppressor gene (TMSG-1) was obtained by using EST assembling and verified by RT-PCR and sequencing. The results showed that expression levels of TMSG-1 were lower in the highly metastatic cell line 1E8, compared with the non-metastatic cell line 2B4. The difference was significant. Full-length cDNA of TMSG-1 was about 2 kb, containing an open reading frame that encoded a protein of 230 amino acids. GenBank Blastn showed no marked homology with known genes. The functional prediction of amino acids sequence encoded by TMSG-1 gene indicated TMSG-1 protein was transmembrane protein, with 3 transmembrane domains, 3 putative protein kinase phosphorylation sites, 2 casein kinase II phosphorylation sites and 1 N-myristoylation site. The pattern of TMSG-1 expression in 6 types of human tumor tissues indicated levels of transcripts were the highest in prostate carcinoma. TMSG-1 had lower expression in metastases of lung carcinoma compared to primary lung carcinoma. Similarly the expression levels were higher in well-differentiated colon carcinoma than that in poorly differentiated colon carcinoma. TMSG-1 could also be detected in breast, ovarian, and pancreatic carcinoma. In 9 samples of primary gastric carcinoma tissues, RT-PCR and densitometric analysis demonstrated TMSG-1 expression levels in samples with lymph node metastases had a decreased tendency, compared to those without lymph node metastases. The difference was significant by student's t test (p<0.05). These results indicated TMSG-1 expression levels were inversely correlated with tumor metastatic potential.展开更多
TMSG-1 was a tumor metastasis-related gene identified using mRNA differential dis-play, whose expression level was lower in cancer cell lines with higher metastatic potential and in tumor tissue with metastasis. TMSG-...TMSG-1 was a tumor metastasis-related gene identified using mRNA differential dis-play, whose expression level was lower in cancer cell lines with higher metastatic potential and in tumor tissue with metastasis. TMSG-1 was transfected to prostate cancer cell line (PC-3M-1E8) with high metastatic potential to observe the effects of increased expression of TMSG-1 on V-ATPase activity, intracellular pH and cell apoptosis. Subcellular localization of the encoded pro-tein of TMSG-1 was determined by using GFP. Results showed that there were no differences of V-ATPase activity among parental PC-3M-1E8 cell line, pcDNA3 transfectant and anti-TMSG-1 transfectant, whereas the V-ATPase activity was significantly higher in TMSG-1 transfectant than that in parental PC-3M-1E8 cell line, pcDNA3 transfectant and Anti-TMSG-1 transfectant (p<0.001). Intracellular pH (pHi) was detected by using the pH-dependent fluorescence probe BECEF. Re-sults showed the pHi was significantly increased in TMSG-1 transfectant. Cell apoptosis assay demonstrated cell apoptosis was significantly higher in -1 transfectant (p<0.01) and BCL2 expres-sion was down regulated. Subcellular localization of TMSG-1 protein showed TMSG-1 was a transmembrane protein, which predicted TMSG-1 protein was located in cytoplasm system, such as endoplasmic reticulum and mitochondrial. These results indicated TMSG-1 up regulation in prostate cancer cell line could promote V-ATPase activity, increase pHi and cell apoptosis, and inhibit the expression of BCL2.展开更多
Background To investigate the differential expression levels of thymosin β10 (Tβ10) and the corresponding changes of actin filament organization in human tumor cell lines with different metastatic potential.Methods ...Background To investigate the differential expression levels of thymosin β10 (Tβ10) and the corresponding changes of actin filament organization in human tumor cell lines with different metastatic potential.Methods Four groups of nine human tumor cell lines with different metastatic potential were analyzed for the amount of Tβ10 mRNAs by Northern blot and for their peptide expression levels by immunohistochemistry. The filamentous actin (F-actin) was observed by staining of TRITC-phalloidin to detect changes in actin organization.Results In comparison with non-/weakly metastatic counterparts, Tβ10 was upregulated in highly metastatic human lung cancer, malignant melanoma and breast cancer cell lines. Staining of TRITC-phalloidin revealed less actin bundles, a fuzzy network of shorter filaments and some F-actin aggregates in the highly metastatic tumor cells. Meanwhile, the actin filaments were robust and orderly arranged in the non-/weakly metastatic cancer cell lines.Conclusion Tβ10 levels correlate positively with the metastatic capacity in human tumors currently examined. The increasing metastatic potential of tumor cells is accompanied by a loss of F-actin, poorly arranged actin skeleton organizations and presence of F-actin aggregates. There is a consistent correlation between the elevated Tβ10 expression and the disrupted actin skeleton.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant No.30170363) Key Project on Science and Technology of Chinese Ministry of Education (Grant No. 01003), Doctoral Training Foundation of Chinese Ministry of Education (
文摘To investigate genes involved in cancer metastasis, mRNA differential display was used to compare the levels of gene expression of two cancer sublines derived from prostate carcinoma cell PC-3M that had different metastatic potentials. The differentially expressed genes were confirmed by Northern blot, and sequenced. The full-length cDNA of a tumor metastasis suppressor gene (TMSG-1) was obtained by using EST assembling and verified by RT-PCR and sequencing. The results showed that expression levels of TMSG-1 were lower in the highly metastatic cell line 1E8, compared with the non-metastatic cell line 2B4. The difference was significant. Full-length cDNA of TMSG-1 was about 2 kb, containing an open reading frame that encoded a protein of 230 amino acids. GenBank Blastn showed no marked homology with known genes. The functional prediction of amino acids sequence encoded by TMSG-1 gene indicated TMSG-1 protein was transmembrane protein, with 3 transmembrane domains, 3 putative protein kinase phosphorylation sites, 2 casein kinase II phosphorylation sites and 1 N-myristoylation site. The pattern of TMSG-1 expression in 6 types of human tumor tissues indicated levels of transcripts were the highest in prostate carcinoma. TMSG-1 had lower expression in metastases of lung carcinoma compared to primary lung carcinoma. Similarly the expression levels were higher in well-differentiated colon carcinoma than that in poorly differentiated colon carcinoma. TMSG-1 could also be detected in breast, ovarian, and pancreatic carcinoma. In 9 samples of primary gastric carcinoma tissues, RT-PCR and densitometric analysis demonstrated TMSG-1 expression levels in samples with lymph node metastases had a decreased tendency, compared to those without lymph node metastases. The difference was significant by student's t test (p<0.05). These results indicated TMSG-1 expression levels were inversely correlated with tumor metastatic potential.
基金supported by the National Natural Science Foundation of China(Grant No.30170363)the Major Science and Technology Program of Ministry of Education+2 种基金the Major State Basic Research Development Program of People’s Republic of Chinathe National Program for Key Science and Technology Projects211 Key Project.
文摘TMSG-1 was a tumor metastasis-related gene identified using mRNA differential dis-play, whose expression level was lower in cancer cell lines with higher metastatic potential and in tumor tissue with metastasis. TMSG-1 was transfected to prostate cancer cell line (PC-3M-1E8) with high metastatic potential to observe the effects of increased expression of TMSG-1 on V-ATPase activity, intracellular pH and cell apoptosis. Subcellular localization of the encoded pro-tein of TMSG-1 was determined by using GFP. Results showed that there were no differences of V-ATPase activity among parental PC-3M-1E8 cell line, pcDNA3 transfectant and anti-TMSG-1 transfectant, whereas the V-ATPase activity was significantly higher in TMSG-1 transfectant than that in parental PC-3M-1E8 cell line, pcDNA3 transfectant and Anti-TMSG-1 transfectant (p<0.001). Intracellular pH (pHi) was detected by using the pH-dependent fluorescence probe BECEF. Re-sults showed the pHi was significantly increased in TMSG-1 transfectant. Cell apoptosis assay demonstrated cell apoptosis was significantly higher in -1 transfectant (p<0.01) and BCL2 expres-sion was down regulated. Subcellular localization of TMSG-1 protein showed TMSG-1 was a transmembrane protein, which predicted TMSG-1 protein was located in cytoplasm system, such as endoplasmic reticulum and mitochondrial. These results indicated TMSG-1 up regulation in prostate cancer cell line could promote V-ATPase activity, increase pHi and cell apoptosis, and inhibit the expression of BCL2.
基金This work was supported by the National Science Foundation of China ( No. 30170363 ) Key Project on Science and Technology of Chinese Ministry of Education ( No. 01003 ) the Major State Basic Research Development Program of China (No. 2002CB513105 )
文摘Background To investigate the differential expression levels of thymosin β10 (Tβ10) and the corresponding changes of actin filament organization in human tumor cell lines with different metastatic potential.Methods Four groups of nine human tumor cell lines with different metastatic potential were analyzed for the amount of Tβ10 mRNAs by Northern blot and for their peptide expression levels by immunohistochemistry. The filamentous actin (F-actin) was observed by staining of TRITC-phalloidin to detect changes in actin organization.Results In comparison with non-/weakly metastatic counterparts, Tβ10 was upregulated in highly metastatic human lung cancer, malignant melanoma and breast cancer cell lines. Staining of TRITC-phalloidin revealed less actin bundles, a fuzzy network of shorter filaments and some F-actin aggregates in the highly metastatic tumor cells. Meanwhile, the actin filaments were robust and orderly arranged in the non-/weakly metastatic cancer cell lines.Conclusion Tβ10 levels correlate positively with the metastatic capacity in human tumors currently examined. The increasing metastatic potential of tumor cells is accompanied by a loss of F-actin, poorly arranged actin skeleton organizations and presence of F-actin aggregates. There is a consistent correlation between the elevated Tβ10 expression and the disrupted actin skeleton.