期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于可变形卷积AlexNet与软注意力机制的皮肤病变识别算法
1
作者 曹迅 冯艳玲 +1 位作者 马昭鹏 胡铭铭 《计算机科学与应用》 2024年第5期229-238,共10页
为解决皮肤病识别领域中数据集类别不平衡、模型复杂度高以及准确率低的问题,提出了一种基于可变形卷积AlexNet与软注意力机制的皮肤病变识别算法。首先,提出改进的可变形卷积AlexNet网络模型,提高模型辨析力的同时,降低了模型的参数量... 为解决皮肤病识别领域中数据集类别不平衡、模型复杂度高以及准确率低的问题,提出了一种基于可变形卷积AlexNet与软注意力机制的皮肤病变识别算法。首先,提出改进的可变形卷积AlexNet网络模型,提高模型辨析力的同时,降低了模型的参数量,加快模型的训练和测试效率。然后,在改进的模型中集成了软注意力机制,使模型聚焦于皮肤病的关键特征区域,优化模型的特征提取和识别能力。最后,提出了一种联合损失函数,对焦点损失函数与交叉熵损失函数进行加权,聚焦于困难样本和易出错样本,解决因数据集类别不平衡而导致的网络朝着错误方向收敛的问题。在公开数据集进行实验,主观和客观的实验结果表明,提出算法在七种不同类别的皮肤病识别准确率高于对比算法,具有较强的鲁棒性和泛化能力。 展开更多
关键词 皮肤病识别 可变形卷积AlexNet 软注意力机制 联合损失函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部