期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于可变形卷积AlexNet与软注意力机制的皮肤病变识别算法
1
作者
曹迅
冯艳玲
+1 位作者
马昭鹏
胡铭铭
《计算机科学与应用》
2024年第5期229-238,共10页
为解决皮肤病识别领域中数据集类别不平衡、模型复杂度高以及准确率低的问题,提出了一种基于可变形卷积AlexNet与软注意力机制的皮肤病变识别算法。首先,提出改进的可变形卷积AlexNet网络模型,提高模型辨析力的同时,降低了模型的参数量...
为解决皮肤病识别领域中数据集类别不平衡、模型复杂度高以及准确率低的问题,提出了一种基于可变形卷积AlexNet与软注意力机制的皮肤病变识别算法。首先,提出改进的可变形卷积AlexNet网络模型,提高模型辨析力的同时,降低了模型的参数量,加快模型的训练和测试效率。然后,在改进的模型中集成了软注意力机制,使模型聚焦于皮肤病的关键特征区域,优化模型的特征提取和识别能力。最后,提出了一种联合损失函数,对焦点损失函数与交叉熵损失函数进行加权,聚焦于困难样本和易出错样本,解决因数据集类别不平衡而导致的网络朝着错误方向收敛的问题。在公开数据集进行实验,主观和客观的实验结果表明,提出算法在七种不同类别的皮肤病识别准确率高于对比算法,具有较强的鲁棒性和泛化能力。
展开更多
关键词
皮肤病识别
可变形卷积AlexNet
软注意力机制
联合损失函数
下载PDF
职称材料
题名
基于可变形卷积AlexNet与软注意力机制的皮肤病变识别算法
1
作者
曹迅
冯艳玲
马昭鹏
胡铭铭
机构
云南大学信息学院
出处
《计算机科学与应用》
2024年第5期229-238,共10页
文摘
为解决皮肤病识别领域中数据集类别不平衡、模型复杂度高以及准确率低的问题,提出了一种基于可变形卷积AlexNet与软注意力机制的皮肤病变识别算法。首先,提出改进的可变形卷积AlexNet网络模型,提高模型辨析力的同时,降低了模型的参数量,加快模型的训练和测试效率。然后,在改进的模型中集成了软注意力机制,使模型聚焦于皮肤病的关键特征区域,优化模型的特征提取和识别能力。最后,提出了一种联合损失函数,对焦点损失函数与交叉熵损失函数进行加权,聚焦于困难样本和易出错样本,解决因数据集类别不平衡而导致的网络朝着错误方向收敛的问题。在公开数据集进行实验,主观和客观的实验结果表明,提出算法在七种不同类别的皮肤病识别准确率高于对比算法,具有较强的鲁棒性和泛化能力。
关键词
皮肤病识别
可变形卷积AlexNet
软注意力机制
联合损失函数
分类号
TP3 [自动化与计算机技术—计算机科学与技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于可变形卷积AlexNet与软注意力机制的皮肤病变识别算法
曹迅
冯艳玲
马昭鹏
胡铭铭
《计算机科学与应用》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部