期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
费曼积分作为一类新的特殊函数
1
作者 刘志峰 马滟青 王辰宇 《Science Bulletin》 SCIE EI CAS CSCD 2024年第7期859-862,共4页
Feynman integrals(FIs)serve as fundamental components of perturbative quantum field theory.The study of FIs is important for both exploring the mysteries of quantum field theories and their phenomenological applicatio... Feynman integrals(FIs)serve as fundamental components of perturbative quantum field theory.The study of FIs is important for both exploring the mysteries of quantum field theories and their phenomenological applications,particularly in particle physics.A significant amount of effort has been devoted to analytically calculating FIs,with the goal of expressing them as linear combinations of special functions. 展开更多
关键词 functions. theory. 特殊函数
原文传递
费曼积分计算助力高精度粒子物理时代
2
作者 刘志峰 马滟青 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2023年第10期52-64,共13页
微扰量子场论计算对于精确检验粒子物理标准模型及探索新物理起着至关重要的作用.使用微扰论计算物理过程时,多圈费曼积分的计算是其瓶颈所在.本文从费曼积分的计算方法到其唯象学应用介绍了这一研究方向的现状与未来发展趋势.随着未来... 微扰量子场论计算对于精确检验粒子物理标准模型及探索新物理起着至关重要的作用.使用微扰论计算物理过程时,多圈费曼积分的计算是其瓶颈所在.本文从费曼积分的计算方法到其唯象学应用介绍了这一研究方向的现状与未来发展趋势.随着未来的粒子对撞机的规划与建设,费曼积分的研究将继续扮演重要角色,推动粒子物理全面迈入高精度时代. 展开更多
关键词 微扰量子场论 费曼积分 对撞机物理
原文传递
Calculation of Feynman loop integration and phase-space integration via auxiliary mass flow 被引量:1
3
作者 Xiao Liu Yan-Qing Ma +1 位作者 Wei Tao Peng Zhang 《Chinese Physics C》 SCIE CAS CSCD 2021年第1期162-174,共13页
We extend the auxiliary-mass-flow(AMF) method originally developed for Feynman loop integration to calculate integrals which also involve phase-space integration.The flow of the auxiliary mass from the boundary(∞) to... We extend the auxiliary-mass-flow(AMF) method originally developed for Feynman loop integration to calculate integrals which also involve phase-space integration.The flow of the auxiliary mass from the boundary(∞) to the physical point(0+) is obtained by numerically solving differential equations with respective to the auxiliary mass.For problems with two or more kinematical invariants,the AMF method can be combined with the traditional differential-equation method,providing systematic boundary conditions and a highly nontrivial self-consistency check.The method is described in detail using a pedagogical example of e+e-→γ*→tt+X at NNLO.We show that the AMF method can systematically and efficiently calculate integrals to high precision. 展开更多
关键词 phase-space integration perturbation theory MULTI-LOOP
原文传递
NLO effects for Ω_(QQQ) baryons in QCD Sum Rules
4
作者 Ren-Hua Wu Yu-Sheng Zuo +2 位作者 Ce Meng Yan-Qing Ma Kuang-Ta Chao 《Chinese Physics C》 SCIE CAS CSCD 2021年第9期44-54,共11页
We study the triply heavy baryonsΩ_(QQQ)(Q=c,b)in the QCD sum rules by performing the first calculation of the next-to-leading order(NLO)contribution to the perturbative QCD part of the correlation functions.Compared... We study the triply heavy baryonsΩ_(QQQ)(Q=c,b)in the QCD sum rules by performing the first calculation of the next-to-leading order(NLO)contribution to the perturbative QCD part of the correlation functions.Compared with the leading order(LO)result,the NLO contribution is found to be very important to theΩ_(QQQ).This is because the NLO not only results in a large correction but also reduces the parameter dependence,making the Borel platform more distinct,especially for the Q_(bbb)in the MS scheme,where the platform appears only at NLO but not at LO.Particularly,owing to the inclusion of the NLO contribution,the renormalization schemes(MS and On-Shell)dependence and the scale dependence are significantly reduced.Consequently,after including the NLO contribution to the perturbative part in the QCD sum rules,the masses are estimated to be 4.53_)0.11)^(+0.26) GeV forΩ_(ccc) and14.27_(-0.32)^(+0.33) GeV forΩ_(bbb),where the results are obtained atμ=M_(B) with errors including those from the variation of the renormalization scaleμin the range(0.8-1.2)M_(B).A careful study of theμdependence in a wider range is further performed,which shows that the LO results are very sensitive to the choice ofμwhereas the NLO results are considerably better.In addition to theμ=M_(B) result,a more stable value,(4.75-4.80)GeV,for theΩ_(ccc) mass is found in the range ofμ=(1.2-2.0)M_(B),which should be viewed as a more relevant prediction in our NLO approach because of μ dependence. 展开更多
关键词 BARYON heavy quark QCD sum rules NLO correction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部