期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进残差结构的肺结节检测方法 被引量:3
1
作者 石陆魁 马红祺 +1 位作者 张朝宗 樊世燕 《计算机应用》 CSCD 北大核心 2020年第7期2110-2116,共7页
针对肺结节检测方法中网络结构复杂所导致的模型计算量大、过拟合的问题,提出了一种结合深度可分离卷积和预激活的改进残差网络结构,将提出的网络结构应用于肺结节检测模型。该模型以目标检测网络Faster RCNN为基础,采用U-Net编码解码... 针对肺结节检测方法中网络结构复杂所导致的模型计算量大、过拟合的问题,提出了一种结合深度可分离卷积和预激活的改进残差网络结构,将提出的网络结构应用于肺结节检测模型。该模型以目标检测网络Faster RCNN为基础,采用U-Net编码解码器结构,利用深度可分离卷积和预激活操作改进了三维残差网络结构。首先,通过使用深度可分离卷积,模型复杂度和计算量大幅度降低;其次,通过使用预激活,模型的正则化得到改善,缓解了过拟合现象;最后,采用矩形卷积核在少量增加模型计算量的前提下扩大了卷积操作的感受野,有效地兼顾了肺结节的全局和局部特征。在LUNA16数据集上的检测中所提方法的灵敏度为96.04%,无限制接收者操作特征曲线下面积(FROC)得分为83.23%。实验结果表明:该方法提高了肺结节检测的灵敏度,又有效降低了检测结果的平均假阳性个数,同时提高了检测效率,可有效辅助放射科医师对肺结节进行检测。 展开更多
关键词 肺结节检测 U-Net Faster R-CNN 深度可分离卷积 预激活
下载PDF
基于多尺度和特征融合的肺癌识别方法
2
作者 石陆魁 杜伟昉 +1 位作者 马红祺 张军 《计算机工程与设计》 北大核心 2020年第5期1427-1433,共7页
针对病人肺结节大小各异、结节征象复杂造成的结节检测困难问题,基于迁移学习提出一种多尺度和特征融合的肺癌识别方法,根据CT图像预测病人未来一年内患肺癌的概率。根据肺结节和肺肿块大小,采用3种不同尺度的图像块输入三维结节检测网... 针对病人肺结节大小各异、结节征象复杂造成的结节检测困难问题,基于迁移学习提出一种多尺度和特征融合的肺癌识别方法,根据CT图像预测病人未来一年内患肺癌的概率。根据肺结节和肺肿块大小,采用3种不同尺度的图像块输入三维结节检测网络,避免小尺度输入的结节检测网络难以获取大区域病灶整体特征的问题;在多尺度输入基础上采用特征融合策略,将网络提取的瓶颈层特征和输出层特征融合,充分描述病灶的详细特征。在Kaggle Data Science Bowl 2017数据集上的实验结果表明,所提方法降低了肺癌预测的损失值,提高了肺癌识别精度。 展开更多
关键词 肺癌识别 肺结节检测 迁移学习 三维卷积神经网络 多尺度 特征融合
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部