The possible reaction mechanisms of FeS+(6Σ+ and 4Ф states) with COS in the gas phase have been studied by using density functional theory at the B3LYP/TZVP and B3LYP/6-311+G* levels:the O/S exchange reaction...The possible reaction mechanisms of FeS+(6Σ+ and 4Ф states) with COS in the gas phase have been studied by using density functional theory at the B3LYP/TZVP and B3LYP/6-311+G* levels:the O/S exchange reaction(FeS+ + COS=FeO+ + CS2),O-transfer reaction(FeS+ + COS=FeSO+ + CS) and S-transfer reaction(FeS+ + COS=FeS2+ + CO).The calculation results show that the large barriers(205.7 and 310.1 kJ/mol) and the small probability of forming the preceding intermediate indicate a much lower efficiency of the O/S exchange and the O-transfer reactions and their corresponding products may not be observed experimentally.FeS2+,the product of S-transfer reaction,is predicted to be the main product.But the reactivity of the 6Σ+ ground state of FeS+ toward COS is lower than the earlier transition metal sulfide cations MS+(M=Sc,Ti and V),although it has more reaction channels and different mechanisms.展开更多
基金Supported by NNSFC (20563005)the General Program of the Applied Basic Research of Science and Technology Department of Yunnan Province (No. 2008ZC095)
文摘The possible reaction mechanisms of FeS+(6Σ+ and 4Ф states) with COS in the gas phase have been studied by using density functional theory at the B3LYP/TZVP and B3LYP/6-311+G* levels:the O/S exchange reaction(FeS+ + COS=FeO+ + CS2),O-transfer reaction(FeS+ + COS=FeSO+ + CS) and S-transfer reaction(FeS+ + COS=FeS2+ + CO).The calculation results show that the large barriers(205.7 and 310.1 kJ/mol) and the small probability of forming the preceding intermediate indicate a much lower efficiency of the O/S exchange and the O-transfer reactions and their corresponding products may not be observed experimentally.FeS2+,the product of S-transfer reaction,is predicted to be the main product.But the reactivity of the 6Σ+ ground state of FeS+ toward COS is lower than the earlier transition metal sulfide cations MS+(M=Sc,Ti and V),although it has more reaction channels and different mechanisms.