In this paper, the one-dimensional(1D) particle-in-cell(PIC) simulation is used to study the modulation instability of ion acoustic waves in electron–ion plasmas. The ion acoustic wave is described by using a nonline...In this paper, the one-dimensional(1D) particle-in-cell(PIC) simulation is used to study the modulation instability of ion acoustic waves in electron–ion plasmas. The ion acoustic wave is described by using a nonlinear Schr¨odinger equation(NLSE) derived from the reductive perturbation method. Form our numerical simulations, we are able to demonstrate that,after the modulation, the amplitude increases steadily over time. Furthermore, by comparing the numerical results with traditional analytical solutions, we acquire the application scope for the reductive perturbation method to obtain the NLSE.We also find this method can also be extended to other fields such as fluid dynamics, nonlinear optics, solid state physics,and the Bose–Einstein condensate to validate the application scope of the results from the traditional perturbation method.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11675014)
文摘In this paper, the one-dimensional(1D) particle-in-cell(PIC) simulation is used to study the modulation instability of ion acoustic waves in electron–ion plasmas. The ion acoustic wave is described by using a nonlinear Schr¨odinger equation(NLSE) derived from the reductive perturbation method. Form our numerical simulations, we are able to demonstrate that,after the modulation, the amplitude increases steadily over time. Furthermore, by comparing the numerical results with traditional analytical solutions, we acquire the application scope for the reductive perturbation method to obtain the NLSE.We also find this method can also be extended to other fields such as fluid dynamics, nonlinear optics, solid state physics,and the Bose–Einstein condensate to validate the application scope of the results from the traditional perturbation method.