随着无线物联网(Internet of Things,IoT)业务的兴起,海量设备的接入,无线网络受攻击的可能性大大增加,无线IoT设备的安全问题越来越重要。提出了一个基于深度机器学习长短期记忆(Long Short-Term Memory,LSTM)模型的无线IoT设备识别方...随着无线物联网(Internet of Things,IoT)业务的兴起,海量设备的接入,无线网络受攻击的可能性大大增加,无线IoT设备的安全问题越来越重要。提出了一个基于深度机器学习长短期记忆(Long Short-Term Memory,LSTM)模型的无线IoT设备识别方法,用于甄别非法入侵的设备或者发现已经被入侵后通信异常的设备。所提方法的创新点在于通过深度机器学习对IoT设备公开传输的帧头信息进行分析识别,而不必深入分析承载信息,不依赖于易被修改和伪装的IP地址等身份信息,因此不受通信信息加密的影响,也不受各类伪装地址及其他入侵方法的影响。所提方法的应用可以自动快速地识别出非授权设备或者被入侵的授权设备,更好地保障网络安全。展开更多
文摘随着无线物联网(Internet of Things,IoT)业务的兴起,海量设备的接入,无线网络受攻击的可能性大大增加,无线IoT设备的安全问题越来越重要。提出了一个基于深度机器学习长短期记忆(Long Short-Term Memory,LSTM)模型的无线IoT设备识别方法,用于甄别非法入侵的设备或者发现已经被入侵后通信异常的设备。所提方法的创新点在于通过深度机器学习对IoT设备公开传输的帧头信息进行分析识别,而不必深入分析承载信息,不依赖于易被修改和伪装的IP地址等身份信息,因此不受通信信息加密的影响,也不受各类伪装地址及其他入侵方法的影响。所提方法的应用可以自动快速地识别出非授权设备或者被入侵的授权设备,更好地保障网络安全。