In order to solve the load problem for aircraft lightning strikes, lightning channel evolution is simulated under the key physical parameters for aircraft lightning current component C. A numerical model of the discha...In order to solve the load problem for aircraft lightning strikes, lightning channel evolution is simulated under the key physical parameters for aircraft lightning current component C. A numerical model of the discharge channel is established, based on magnetohydrodynamics (MHD) and performed by FLUENT software. With the aid of user-defined functions and a user- defined scalar, the Lorentz force, Joule heating and material parameters of an air thermal plasma are added. A three-dimensional lightning arc channel is simulated and the arc evolution in space is obtained. The results show that the temperature distribution of the lightning channel is symmetrical and that the hottest region occurs at the center of the lightning channel. The distributions of potential and current density are obtained, showing that the difference in electric potential or energy between two points tends to make the arc channel develop downwards. The arc channel comes into expansion on the anode surface due to stagnation of the thermal plasma and there exists impingement on the copper plate when the arc channel comes into contact with the anode plate.展开更多
基金supported by National Natural Science Foundation of China(No.51475369)
文摘In order to solve the load problem for aircraft lightning strikes, lightning channel evolution is simulated under the key physical parameters for aircraft lightning current component C. A numerical model of the discharge channel is established, based on magnetohydrodynamics (MHD) and performed by FLUENT software. With the aid of user-defined functions and a user- defined scalar, the Lorentz force, Joule heating and material parameters of an air thermal plasma are added. A three-dimensional lightning arc channel is simulated and the arc evolution in space is obtained. The results show that the temperature distribution of the lightning channel is symmetrical and that the hottest region occurs at the center of the lightning channel. The distributions of potential and current density are obtained, showing that the difference in electric potential or energy between two points tends to make the arc channel develop downwards. The arc channel comes into expansion on the anode surface due to stagnation of the thermal plasma and there exists impingement on the copper plate when the arc channel comes into contact with the anode plate.