随着社会经济的不断发展,大空间建筑逐渐步入人们的生活中,对大空间建筑的消防技术要求逐渐提高,火焰识别技术已成为近年来研究的热点。为实现单帧图像的火焰检测,本文首先提出了一种基于RGB和HSI颜色模型的混合判据,它既保留了RGB模型...随着社会经济的不断发展,大空间建筑逐渐步入人们的生活中,对大空间建筑的消防技术要求逐渐提高,火焰识别技术已成为近年来研究的热点。为实现单帧图像的火焰检测,本文首先提出了一种基于RGB和HSI颜色模型的混合判据,它既保留了RGB模型中的直观判据,又加入了HSI模型中对于饱和度判据,效果优于两者单独使用或单纯结合的情况;同时利用基于加权欧式距离的方法对图像进行特殊灰度化处理,通过Kmeans++颜色聚类,完成火焰图像的分割,获得最终感兴趣区域;提取该区域几何轮廓并利用不规则度和形态比例等几何判据,对待检测图像进行最终的识别。为评估所提出检测方法的性能,选取典型火焰图像和非火焰图像,在Visual Studio 2013环境下进行对比实验,通过对运行时间、提取偏差率和识别误报率等结果的分析,证明了所提方法的有效性和可实现性。本文所提出的方法具有良好的检测效果,能够保证火焰提取和识别的精度,同时兼顾实时性的要求,可以应用在实际的大空间消防项目中。展开更多
文摘随着社会经济的不断发展,大空间建筑逐渐步入人们的生活中,对大空间建筑的消防技术要求逐渐提高,火焰识别技术已成为近年来研究的热点。为实现单帧图像的火焰检测,本文首先提出了一种基于RGB和HSI颜色模型的混合判据,它既保留了RGB模型中的直观判据,又加入了HSI模型中对于饱和度判据,效果优于两者单独使用或单纯结合的情况;同时利用基于加权欧式距离的方法对图像进行特殊灰度化处理,通过Kmeans++颜色聚类,完成火焰图像的分割,获得最终感兴趣区域;提取该区域几何轮廓并利用不规则度和形态比例等几何判据,对待检测图像进行最终的识别。为评估所提出检测方法的性能,选取典型火焰图像和非火焰图像,在Visual Studio 2013环境下进行对比实验,通过对运行时间、提取偏差率和识别误报率等结果的分析,证明了所提方法的有效性和可实现性。本文所提出的方法具有良好的检测效果,能够保证火焰提取和识别的精度,同时兼顾实时性的要求,可以应用在实际的大空间消防项目中。