期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进残差学习的东巴象形文字识别 被引量:1
1
作者 骆彦龙 毕晓君 +1 位作者 吴立成 李霞丽 《智能系统学报》 CSCD 北大核心 2022年第1期79-87,共9页
基于深度学习模型的东巴象形文字识别效果明显优于传统算法,但目前仍存在识别字数少、识别准确率低等问题。为此本文建立了包含1387个东巴象形文字、图片总量达到22万余张的数据集,大幅度增加了可识别字数,并辅助提高了东巴象形文字的... 基于深度学习模型的东巴象形文字识别效果明显优于传统算法,但目前仍存在识别字数少、识别准确率低等问题。为此本文建立了包含1387个东巴象形文字、图片总量达到22万余张的数据集,大幅度增加了可识别字数,并辅助提高了东巴象形文字的识别准确率。同时,本文根据东巴象形文字相似度高、手写随意性大的特点,选择ResNet模型作为改进的网络结构,设计了残差跳跃连接方式和卷积层的数量,并通过加入最大池化层实现了下采样的改进。实验结果表明,在本文建立的东巴象形文字数据集上,改进的ResNet模型实现了东巴象形文字识别字数多且识别准确率高的最好效果,识别准确率可达到98.65%。 展开更多
关键词 深度学习 东巴象形文字 图像识别 数据集建立 ResNet模型 残差跳跃连接 下采样改进 识别准确率
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部