期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种改进的基于幂线性单元的激活函数 被引量:3
1
作者 骆训浩 李培华 《计算机应用研究》 CSCD 北大核心 2019年第10期3145-3147,3178,共4页
针对修正线性单元(ReLU)完全丢弃网络中包含有用信息的负激活值问题,基于参数化修正线性单元(PReLU)和指数线性单元(ELU)的研究,提出一种新颖的参数化激活函数幂线性单元(PoLU)。PoLU对输入的负激活部分实施有符号的幂非线性变化,幂函... 针对修正线性单元(ReLU)完全丢弃网络中包含有用信息的负激活值问题,基于参数化修正线性单元(PReLU)和指数线性单元(ELU)的研究,提出一种新颖的参数化激活函数幂线性单元(PoLU)。PoLU对输入的负激活部分实施有符号的幂非线性变化,幂函数的参数是可以在CNN训练过程中自适应学习的,同时像ReLU那样保持正激活部分不变。PoLU可以高效地实现并且灵活地运用到不同的卷积神经网络架构中。在广泛使用的CIFAR-10/100数据库上的实验结果表明,PoLU要优于ReLU和它相对应的激活函数。 展开更多
关键词 幂线性单元 参数化激活函数 卷积神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部