期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
各向异性扩散问题的一个单元中心型有限体积格式 被引量:2
1
作者 骆龙山 高志明 邬吉明 《工程数学学报》 CSCD 北大核心 2015年第3期359-368,共10页
在辐射流体力学的数值模拟中,扩散算子的高效高精度离散是一个十分重要的问题.本文研究各向异性扩散方程在任意多边形网格上的数值求解问题,我们利用调和平均点和线性精确方法,构造了一个单元中心型有限体积格式.该格式只含有单元中心... 在辐射流体力学的数值模拟中,扩散算子的高效高精度离散是一个十分重要的问题.本文研究各向异性扩散方程在任意多边形网格上的数值求解问题,我们利用调和平均点和线性精确方法,构造了一个单元中心型有限体积格式.该格式只含有单元中心未知量,满足局部守恒条件,有紧凑的计算模板,在结构四边形网格上退化为一个九点格式.由于调和平均点插值算法是一个具有两点模板的二阶保正算法,因此,采用单元边上的调和平均点为插值节点,使得离散格式十分简洁,容易实施.此外,我们在格式构造中仅采用了二、三维网格的共有拓扑关系,使格式容易向三维问题推广,大部分程序代码可实现二、三维公用.我们采用典型的大变形扭曲网格及典型的扩散算例(包括连续和间断的扩散张量)对所提出的新格式进行了测试,数值算例表明,新格式在许多扭曲的多边形网格上具有二阶精度. 展开更多
关键词 扩散方程 任意多边形网格 单元中心型有限体积格式 线性精确 调和平均点
下载PDF
一种基于双界面函数的界面捕捉方法 被引量:6
2
作者 李康 刘娜 +2 位作者 何志伟 骆龙山 田保林 《力学学报》 EI CSCD 北大核心 2017年第6期1290-1300,共11页
基于代数重构思想,发展了一种新的双界面函数重构方法,并采用双正弦函数构造了双正弦界面重构方法(double sine interface capturing,DSINC).为验证不同界面函数对界面捕捉效果的影响,用数值方法求解了可压缩五方程模型,其中对流项的离... 基于代数重构思想,发展了一种新的双界面函数重构方法,并采用双正弦函数构造了双正弦界面重构方法(double sine interface capturing,DSINC).为验证不同界面函数对界面捕捉效果的影响,用数值方法求解了可压缩五方程模型,其中对流项的离散采用五阶WENO(weighted essentially non-oscillatory method)格式,时间积分采用三阶Runge--Kutta方法,通量计算分别考虑了HLL和HLLC方法,而状态方程采用Mie-Gr¨uneisen状态方程.在数值计算中,在界面附近,采用DSINC来获得体积分数的重构,而在远离界面的区域采用WENO格式来获得高阶插值状态.相比采用单界面函数的方法,如双曲正切界面重构方法(tangent of hyperbola for interface capturing,THINC),DSINC方法同样具有界面重构算法简单,在程序中添加方便等特点,两者区别在于,DSINC方法在重构过程中未知函数更易于求解,而无需求解复杂的非线性超越方程,这就使其具有易于向多维扩展的能力.一些典型的两相流动问题,如圆形水柱对流问题,两相三波点问题和激波-界面不稳定性问题等被用作不同界面函数对界面捕捉效果的影响对比.对比分析发现,DSINC与THINC在界面捕捉效果上大致保持一致,并在计算中表现出了较好的稳定性.双界面函数重构思想可以为多相流动界面的代数重构提供了一种新的思路. 展开更多
关键词 多相流动 界面捕捉 双曲正切界面重构方法 双界面函数重构 双正弦界面重构方法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部