期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于BiLSTM-CRF的体育新闻主题词抽取方法
1
作者
江逸琪
赵彤洲
+1 位作者
柴悦
高佩东
《武汉工程大学学报》
CAS
2020年第1期102-107,共6页
针对典型的循环神经网络方法在抽取主题词时因缺少上下文相关的句子级信息而导致识别准确率较低的问题,提出了一种基于双向长短期记忆网络条件随机场(BiLSTM-CRF)模型联合TextRank的主题词抽取方法。首先,利用TextRank对新闻文本进行主...
针对典型的循环神经网络方法在抽取主题词时因缺少上下文相关的句子级信息而导致识别准确率较低的问题,提出了一种基于双向长短期记忆网络条件随机场(BiLSTM-CRF)模型联合TextRank的主题词抽取方法。首先,利用TextRank对新闻文本进行主题句抽取,再使用双向长短期记忆(BiLSTM)模型获取文本的前后特征,最后使用条件随机场(CRF)完成句子级序列标注,得到主题词。在多组体育类新闻数据集上进行实验,该方法较对照组BiLSTM方法F1值提高约0.8%~5.1%,且用时更短。因此,改进的BiLSTM-CRF方法可显著提升主题词的抽取准确率和效率。
展开更多
关键词
抽取
TextRank
BiLSTM-CRF
下载PDF
职称材料
基于Att-iBi-LSTM的新闻主题词提取方法研究
2
作者
柴悦
赵彤洲
+1 位作者
江逸琪
高佩东
《武汉工程大学学报》
CAS
2020年第5期575-580,共6页
针对LSTM网络进行主题词提取时因没有考虑中心词的下文对主题词的影响而导致提取准确率低的问题,提出了一种双向LSTM引入Attention机制模型(Att-iBi-LSTM)的主题词提取方法。首先利用LSTM模型将中心词的上文和下文信息在两个方向上建模...
针对LSTM网络进行主题词提取时因没有考虑中心词的下文对主题词的影响而导致提取准确率低的问题,提出了一种双向LSTM引入Attention机制模型(Att-iBi-LSTM)的主题词提取方法。首先利用LSTM模型将中心词的上文和下文信息在两个方向上建模;然后在双向LSTM模型中引入注意力机制,为影响力更高的特征分配更高的权重;最后利用softmax层将文档中的词分为主题词或非主题词。并且还提出了一种两阶段模型训练方法,即在自动标注的训练集上进行预训练之后,再利用人工标注数据集训练模型。实验在体育、娱乐和科技3种新闻文本上进行主题词提取任务,实验结果表明本文提出的Att-iBi-LSTM模型与SVM、TextRank和LSTM相比F1值分别提高了13.78%、24.31%和3.32%,使用两阶段训练方法的Att-iBi-LSTM比一阶段训练的F1值提高了1.56%。
展开更多
关键词
LSTM
Attention机制
主题词提取
下载PDF
职称材料
题名
基于BiLSTM-CRF的体育新闻主题词抽取方法
1
作者
江逸琪
赵彤洲
柴悦
高佩东
机构
武汉工程大学计算机科学与工程学院
出处
《武汉工程大学学报》
CAS
2020年第1期102-107,共6页
基金
国家自然科学基金(61601176)
武汉工程大学中青年人才项目(Q20191510)
武汉工程大学研究生创新基金(CX2018195)。
文摘
针对典型的循环神经网络方法在抽取主题词时因缺少上下文相关的句子级信息而导致识别准确率较低的问题,提出了一种基于双向长短期记忆网络条件随机场(BiLSTM-CRF)模型联合TextRank的主题词抽取方法。首先,利用TextRank对新闻文本进行主题句抽取,再使用双向长短期记忆(BiLSTM)模型获取文本的前后特征,最后使用条件随机场(CRF)完成句子级序列标注,得到主题词。在多组体育类新闻数据集上进行实验,该方法较对照组BiLSTM方法F1值提高约0.8%~5.1%,且用时更短。因此,改进的BiLSTM-CRF方法可显著提升主题词的抽取准确率和效率。
关键词
抽取
TextRank
BiLSTM-CRF
Keywords
sport news
topic word extraction
TextRank
BiLSTM-CRF
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
基于Att-iBi-LSTM的新闻主题词提取方法研究
2
作者
柴悦
赵彤洲
江逸琪
高佩东
机构
武汉工程大学计算机科学与工程学院
出处
《武汉工程大学学报》
CAS
2020年第5期575-580,共6页
基金
国家自然科学基金(61601176)
武汉研究院开放性课题(IWHS20192031)。
文摘
针对LSTM网络进行主题词提取时因没有考虑中心词的下文对主题词的影响而导致提取准确率低的问题,提出了一种双向LSTM引入Attention机制模型(Att-iBi-LSTM)的主题词提取方法。首先利用LSTM模型将中心词的上文和下文信息在两个方向上建模;然后在双向LSTM模型中引入注意力机制,为影响力更高的特征分配更高的权重;最后利用softmax层将文档中的词分为主题词或非主题词。并且还提出了一种两阶段模型训练方法,即在自动标注的训练集上进行预训练之后,再利用人工标注数据集训练模型。实验在体育、娱乐和科技3种新闻文本上进行主题词提取任务,实验结果表明本文提出的Att-iBi-LSTM模型与SVM、TextRank和LSTM相比F1值分别提高了13.78%、24.31%和3.32%,使用两阶段训练方法的Att-iBi-LSTM比一阶段训练的F1值提高了1.56%。
关键词
LSTM
Attention机制
主题词提取
Keywords
LSTM
Attention
topic words
extraction
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于BiLSTM-CRF的体育新闻主题词抽取方法
江逸琪
赵彤洲
柴悦
高佩东
《武汉工程大学学报》
CAS
2020
0
下载PDF
职称材料
2
基于Att-iBi-LSTM的新闻主题词提取方法研究
柴悦
赵彤洲
江逸琪
高佩东
《武汉工程大学学报》
CAS
2020
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部