期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于BiLSTM-CRF的体育新闻主题词抽取方法
1
作者 江逸琪 赵彤洲 +1 位作者 柴悦 高佩东 《武汉工程大学学报》 CAS 2020年第1期102-107,共6页
针对典型的循环神经网络方法在抽取主题词时因缺少上下文相关的句子级信息而导致识别准确率较低的问题,提出了一种基于双向长短期记忆网络条件随机场(BiLSTM-CRF)模型联合TextRank的主题词抽取方法。首先,利用TextRank对新闻文本进行主... 针对典型的循环神经网络方法在抽取主题词时因缺少上下文相关的句子级信息而导致识别准确率较低的问题,提出了一种基于双向长短期记忆网络条件随机场(BiLSTM-CRF)模型联合TextRank的主题词抽取方法。首先,利用TextRank对新闻文本进行主题句抽取,再使用双向长短期记忆(BiLSTM)模型获取文本的前后特征,最后使用条件随机场(CRF)完成句子级序列标注,得到主题词。在多组体育类新闻数据集上进行实验,该方法较对照组BiLSTM方法F1值提高约0.8%~5.1%,且用时更短。因此,改进的BiLSTM-CRF方法可显著提升主题词的抽取准确率和效率。 展开更多
关键词 抽取 TextRank BiLSTM-CRF
下载PDF
基于Att-iBi-LSTM的新闻主题词提取方法研究
2
作者 柴悦 赵彤洲 +1 位作者 江逸琪 高佩东 《武汉工程大学学报》 CAS 2020年第5期575-580,共6页
针对LSTM网络进行主题词提取时因没有考虑中心词的下文对主题词的影响而导致提取准确率低的问题,提出了一种双向LSTM引入Attention机制模型(Att-iBi-LSTM)的主题词提取方法。首先利用LSTM模型将中心词的上文和下文信息在两个方向上建模... 针对LSTM网络进行主题词提取时因没有考虑中心词的下文对主题词的影响而导致提取准确率低的问题,提出了一种双向LSTM引入Attention机制模型(Att-iBi-LSTM)的主题词提取方法。首先利用LSTM模型将中心词的上文和下文信息在两个方向上建模;然后在双向LSTM模型中引入注意力机制,为影响力更高的特征分配更高的权重;最后利用softmax层将文档中的词分为主题词或非主题词。并且还提出了一种两阶段模型训练方法,即在自动标注的训练集上进行预训练之后,再利用人工标注数据集训练模型。实验在体育、娱乐和科技3种新闻文本上进行主题词提取任务,实验结果表明本文提出的Att-iBi-LSTM模型与SVM、TextRank和LSTM相比F1值分别提高了13.78%、24.31%和3.32%,使用两阶段训练方法的Att-iBi-LSTM比一阶段训练的F1值提高了1.56%。 展开更多
关键词 LSTM Attention机制 主题词提取
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部