搜索提示自动补全是正式提交搜索之前,影响用户输入搜索内容的关键手段之一,是商业搜索引擎不可或缺的核心功能之一。如何提供更好的提示词,是一个排序问题。在机器学习排序领域,收集的训练数据有位置偏差,且会影响训练模型的排序效果,...搜索提示自动补全是正式提交搜索之前,影响用户输入搜索内容的关键手段之一,是商业搜索引擎不可或缺的核心功能之一。如何提供更好的提示词,是一个排序问题。在机器学习排序领域,收集的训练数据有位置偏差,且会影响训练模型的排序效果,已经是一个较为普遍的认知。针对以上训练数据有偏问题,对位置偏差和相关度使用深度学习分别建模,并结合改进后的上下文语义特征,新设计一种同时学习位置偏差和提示词相关度的深度学习排序算法(An Unbiased Deep Learning To Rank Algorithm for Suggestion Auto-completion,UDLTR-SAc)提升搜索提示自动补全的排序效果。UDLTR-SAc能自动学习训练数据中由于位置引入的偏差,从而学习到更为准确的相关度计算模型,在与没有考虑有偏问题的同类型算法及经典补全排序算法对比上分别获得显著增长;同时,在线上A/B测试上也获得+0.1%(p<0.1)的GMV增长。展开更多
文摘搜索提示自动补全是正式提交搜索之前,影响用户输入搜索内容的关键手段之一,是商业搜索引擎不可或缺的核心功能之一。如何提供更好的提示词,是一个排序问题。在机器学习排序领域,收集的训练数据有位置偏差,且会影响训练模型的排序效果,已经是一个较为普遍的认知。针对以上训练数据有偏问题,对位置偏差和相关度使用深度学习分别建模,并结合改进后的上下文语义特征,新设计一种同时学习位置偏差和提示词相关度的深度学习排序算法(An Unbiased Deep Learning To Rank Algorithm for Suggestion Auto-completion,UDLTR-SAc)提升搜索提示自动补全的排序效果。UDLTR-SAc能自动学习训练数据中由于位置引入的偏差,从而学习到更为准确的相关度计算模型,在与没有考虑有偏问题的同类型算法及经典补全排序算法对比上分别获得显著增长;同时,在线上A/B测试上也获得+0.1%(p<0.1)的GMV增长。