Structure prediction methods have been widely used as a state-of-the-art tool for structure searches and materials discovery, leading to many theory-driven breakthroughs on discoveries of new materials. These methods ...Structure prediction methods have been widely used as a state-of-the-art tool for structure searches and materials discovery, leading to many theory-driven breakthroughs on discoveries of new materials. These methods generally involve the exploration of the potential energy surfaces of materials through various structure sampling techniques and optimization algorithms in conjunction with quantum mechanical calculations. By taking advantage of the general feature of materials potential energy surface and swarm-intelligence-based global optimization algorithms, we have developed the CALYPSO method for structure prediction, which has been widely used in fields as diverse as computational physics, chemistry, and materials science. In this review, we provide the basic theory of the CALYPSO method, placing particular emphasis on the principles of its various structure dealing methods. We also survey the current challenges faced by structure prediction methods and include an outlook on the future developments of CALYPSO in the conclusions.展开更多
As a fundamental thermodynamic variable, pressure can alter the bonding patterns and drive phase transitions leading to the creation of new high-pressure phases with exotic properties that are inaccessible at ambient ...As a fundamental thermodynamic variable, pressure can alter the bonding patterns and drive phase transitions leading to the creation of new high-pressure phases with exotic properties that are inaccessible at ambient pressure. Using the swarm intelligence structural prediction method, the phase transition of TiF_(3), from R-3c to the Pnma phase, was predicted at high pressure, accompanied by the destruction of TiF_6 octahedra and formation of TiF_8 square antiprismatic units. The Pnma phase of TiF_(3), formed using the laser-heated diamond-anvil-cell technique was confirmed via high-pressure x-ray diffraction experiments. Furthermore, the in situ electrical measurements indicate that the newly found Pnma phase has a semiconducting character, which is also consistent with the electronic band structure calculations. Finally, it was shown that this pressure-induced phase transition is a general phenomenon in ScF_(3), VF_(3), CrF_(3), and MnF_(3), offering valuable insights into the high-pressure phases of transition metal trifluorides.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11534003 and 11604117)the National Key Research and Development Program of China(Grant No.2016YFB0201201)+1 种基金the Program for JLU Science and Technology Innovative Research Team(JLUSTIRT)of Chinathe Science Challenge Project of China(Grant No.TZ2016001)
文摘Structure prediction methods have been widely used as a state-of-the-art tool for structure searches and materials discovery, leading to many theory-driven breakthroughs on discoveries of new materials. These methods generally involve the exploration of the potential energy surfaces of materials through various structure sampling techniques and optimization algorithms in conjunction with quantum mechanical calculations. By taking advantage of the general feature of materials potential energy surface and swarm-intelligence-based global optimization algorithms, we have developed the CALYPSO method for structure prediction, which has been widely used in fields as diverse as computational physics, chemistry, and materials science. In this review, we provide the basic theory of the CALYPSO method, placing particular emphasis on the principles of its various structure dealing methods. We also survey the current challenges faced by structure prediction methods and include an outlook on the future developments of CALYPSO in the conclusions.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12034009, 91961204, and 11974134)。
文摘As a fundamental thermodynamic variable, pressure can alter the bonding patterns and drive phase transitions leading to the creation of new high-pressure phases with exotic properties that are inaccessible at ambient pressure. Using the swarm intelligence structural prediction method, the phase transition of TiF_(3), from R-3c to the Pnma phase, was predicted at high pressure, accompanied by the destruction of TiF_6 octahedra and formation of TiF_8 square antiprismatic units. The Pnma phase of TiF_(3), formed using the laser-heated diamond-anvil-cell technique was confirmed via high-pressure x-ray diffraction experiments. Furthermore, the in situ electrical measurements indicate that the newly found Pnma phase has a semiconducting character, which is also consistent with the electronic band structure calculations. Finally, it was shown that this pressure-induced phase transition is a general phenomenon in ScF_(3), VF_(3), CrF_(3), and MnF_(3), offering valuable insights into the high-pressure phases of transition metal trifluorides.