In situ surface synthesis of Ca–Mg–Al hydrotalcite(HT) on inorganic ceramic membrane(CM) was investigated with urea as precipitator. The effects of molar ratio of raw materials, crystallization time, and temperature...In situ surface synthesis of Ca–Mg–Al hydrotalcite(HT) on inorganic ceramic membrane(CM) was investigated with urea as precipitator. The effects of molar ratio of raw materials, crystallization time, and temperature on surface synthesis of HT were examined. The as-prepared HT/CM samples were characterized by XRD and SEM and an in situ growth mechanism of HT on CM was proposed. KF/HT/CM obtained by loading potassium fluoride(KF) on the HT layer by impregnation and calcination method was used as catalyst for transesterification between palm oil and methanol. The comparison of KF/HT/CM and pure KF/HT powder under identical reaction conditions shows that the production of fatty acid methyl ester is equivalent, which means that the use of inorganic catalytic membrane in the transesterification is a viable alternative.展开更多
基金Supported by the National Natural Science Foundation of China(21276050 and21406034)the National Basic Research Program of China(2010CB732206)
文摘In situ surface synthesis of Ca–Mg–Al hydrotalcite(HT) on inorganic ceramic membrane(CM) was investigated with urea as precipitator. The effects of molar ratio of raw materials, crystallization time, and temperature on surface synthesis of HT were examined. The as-prepared HT/CM samples were characterized by XRD and SEM and an in situ growth mechanism of HT on CM was proposed. KF/HT/CM obtained by loading potassium fluoride(KF) on the HT layer by impregnation and calcination method was used as catalyst for transesterification between palm oil and methanol. The comparison of KF/HT/CM and pure KF/HT powder under identical reaction conditions shows that the production of fatty acid methyl ester is equivalent, which means that the use of inorganic catalytic membrane in the transesterification is a viable alternative.