期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于高光谱的土壤养分含量反演模型研究 被引量:21
1
作者 陶培峰 王建华 +3 位作者 李志忠 周萍 杨佳佳 高樊琦 《地质与资源》 CAS 2020年第1期68-75,84,共9页
为实现土壤养分(有机质SOM、全氮TN、全磷TP、全硫TS)含量的快速测定,以建三江创业农场为例,对土壤原始反射率进行了一阶微分(FD)、倒数对数(RL)、倒数一阶微分(FDR)、多元散射校正(MSC)和连续统去除(CR)变换,分析6种光谱变量与土壤养... 为实现土壤养分(有机质SOM、全氮TN、全磷TP、全硫TS)含量的快速测定,以建三江创业农场为例,对土壤原始反射率进行了一阶微分(FD)、倒数对数(RL)、倒数一阶微分(FDR)、多元散射校正(MSC)和连续统去除(CR)变换,分析6种光谱变量与土壤养分的相关性,将在α=0.01水平上显著相关的波段作为特征波段,运用多元逐步回归(SMLR)、偏最小二乘回归(PLSR)和BP神经网络(BPNN)三种分析方法分别建立有机质、全氮、全磷和全硫的高光谱预测模型,并利用决定系数(R2)、均方根误差(RMSE)和相对分析误差(RPD)对预测模型进行评价.结果显示,PLSR和BPNN建立的土壤养分含量预测模型均优于SMLR,能极好地预测有机质和全氮含量,同时具有粗略估算全硫含量的能力.三种方法中仅有CR-BPNN能对全磷含量进行粗略估算.对有机质、全氮、全磷和全硫预测效果最佳的模型及其验证集决定系数分别为:MSC-PLSR(0.86)、MSC-PLSR(0.75)、CR-BPNN(0.56)、FDR-BPNN(0.67). 展开更多
关键词 土壤养分 高光谱 多元逐步回归 偏最小二乘 BP神经网络 反演模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部