SiO2 nanoparticles were used to regulate the crystallizing process of lead halide perovskite films prepared by the sequential deposition method,which was used in the low-temperature-processed,carbon-electrode-basing,h...SiO2 nanoparticles were used to regulate the crystallizing process of lead halide perovskite films prepared by the sequential deposition method,which was used in the low-temperature-processed,carbon-electrode-basing,hole-conductor-free planar perovskite solar cells.It was observed that,after adding small amount of SiO2 precursor(1 vol%)into the lead iodide solution,performance parameters of open-circuit voltage,short-circuit current and fill factor were all upgraded,which helped to increase the power conversion efficiency(reverse scan)from 11.44(±1.83)%(optimized at 12.42%)to 14.01(±2.14)%(optimized at 15.28%,AM 1.5G,100 mW/cm^2).Transient photocurrent decay curve measurements showed that,after the incorporation of SiO2 nanoparticles,charge extraction was accelerated,while transient photovoltage decay and dark current curve tests both showed that recombination was retarded.The improvement is due to the improved crystallinity of the perovskite film.X-ray diffraction and scanning electron microscopy studies observed that,with incorporation of amorphous SiO2 nanoparticles,smaller crystallites were obtained in lead iodide films,while larger crystallites were achieved in the final perovskite film.This study implies that amorphous SiO2 nanoparticles could regulate the coarsening process of the perovskite film,which provides an effective method in obtaining high quality perovskite film.展开更多
In the past decades there have been many breakthroughs in low-dimensional materials,especially in two-dimensional(2D)atomically thin crystals like graphene.As structural analogues of graphene but with a sizeable band ...In the past decades there have been many breakthroughs in low-dimensional materials,especially in two-dimensional(2D)atomically thin crystals like graphene.As structural analogues of graphene but with a sizeable band gap,monolayers of atomically thin transition metal dichalcogenides(with formula of MX2,M=Mo,W;X=S,Se,Te,etc.)have emerged as the ideal 2D prototypes for exploring fundamentals in physics such as valleytronics due to the quantum confinement effects,and for engineering a wide range of nanoelectronic,optoelectronic,and photocatalytic applications.Transition metal trioxides as promising materials with low evaporation temperature,high work function,and inertness to air have been widely used in the fabrication and modification of MX2.In this review,we reported the fabrications of one-dimensional MoS2 wrapped MoO2 single crystals with varied crystal direction via atmospheric pressure chemical vapor deposition method and of 2D MoOx covered MoX2 by means of exposing MoX2 to ultraviolet ozone.The prototype devices show good performances.The approaches are common to other transition metal dichalcogenides and transition metal oxides.展开更多
By employing non-equilibrium Green's function combined with the spin-polarized density-functional theory, we investigate the spin-dependent electronic transport properties of armchair arsenene nanoribbons(a As NRs)...By employing non-equilibrium Green's function combined with the spin-polarized density-functional theory, we investigate the spin-dependent electronic transport properties of armchair arsenene nanoribbons(a As NRs). Our results show that the spin-metal and spin-semiconductor properties can be observed in a As NRs with different widths. We also find that there is nearly 100% bipolar spin-filtering behavior in the a As NR-based device with antiparallel spin configuration. Moreover, rectifying behavior and giant magnetoresistance are found in the device. The corresponding physical analyses have been given.展开更多
Enhancing optical and electrical performances is effective in improving power conversion efficiency of photovoltaic devices. Here, gold and silver dual nanoparticles were imported and embedded in the hole transport la...Enhancing optical and electrical performances is effective in improving power conversion efficiency of photovoltaic devices. Here, gold and silver dual nanoparticles were imported and embedded in the hole transport layer of perovskite solar cells. Due to the cooperative localized surface plasmon resonance of these two kinds of metal nanostructures, light harvest of perovskite material layer and the electrical performance of device were improved, which finally upgraded short circuit current density by 10.0%, and helped to increase power conversion efficiency from 10.4% to 11.6% under AM 1.5G illumination with intensity of 100 m W/cm;. In addition, we explored the influence of silver and gold nanoparticles on charge carrier generation, dissociation, recombination, and transportation inside perovskite solar cells.展开更多
Organic thin film transistors(OTFTs)show great potential for applications in low-cost,light-weight flexible electronics.OTFTs were first reported in 1986 with polythiophene as the active layer material with a mobility...Organic thin film transistors(OTFTs)show great potential for applications in low-cost,light-weight flexible electronics.OTFTs were first reported in 1986 with polythiophene as the active layer material with a mobility of^105 cm2/(V s)[1].Since then,OTFTs have shown impressive improvements in device performance parameters,e.g.,mobility improved by over 4 orders of magnitude.These advances followed discoveries of new materials and improvements in device engineering,as well as in morphology and interface engineering[2–4].Flexible OTFTs(f-OTFTs)as a very important electronic component in flexible electronics are attracting a great deal of attention from both academic and industrial communities.Presently,f-OTFTs are potentially used for electronic skin[5],flexible organic integrated circuits[6],flexible active matrix displays[7]and neuromorphic devices[8].展开更多
基金Project supported by the Fundamental Research Funds for the Central South University,China(Grant No.2019zzts426)the National Natural Science Foundation of China(Grant Nos.61172047,61774170,and 51673218)+1 种基金the Scientific and Technological Project of Hunan Provincial Development and Reform Commission,China,the National Science Foundation,USA(Grant Nos.CBET-1437656 and DMR-1903962)the Innovation-Driven Project of Central South University(Grant No.2020CX006)。
文摘SiO2 nanoparticles were used to regulate the crystallizing process of lead halide perovskite films prepared by the sequential deposition method,which was used in the low-temperature-processed,carbon-electrode-basing,hole-conductor-free planar perovskite solar cells.It was observed that,after adding small amount of SiO2 precursor(1 vol%)into the lead iodide solution,performance parameters of open-circuit voltage,short-circuit current and fill factor were all upgraded,which helped to increase the power conversion efficiency(reverse scan)from 11.44(±1.83)%(optimized at 12.42%)to 14.01(±2.14)%(optimized at 15.28%,AM 1.5G,100 mW/cm^2).Transient photocurrent decay curve measurements showed that,after the incorporation of SiO2 nanoparticles,charge extraction was accelerated,while transient photovoltage decay and dark current curve tests both showed that recombination was retarded.The improvement is due to the improved crystallinity of the perovskite film.X-ray diffraction and scanning electron microscopy studies observed that,with incorporation of amorphous SiO2 nanoparticles,smaller crystallites were obtained in lead iodide films,while larger crystallites were achieved in the final perovskite film.This study implies that amorphous SiO2 nanoparticles could regulate the coarsening process of the perovskite film,which provides an effective method in obtaining high quality perovskite film.
基金Project supported by the National Natural Science Foundation of China(Grant No.11874427)the National Science Foundation DMR-1903962the Fundamental Research Funds for the Central Universities of Central South University(Grant No.2019zzts429).
文摘In the past decades there have been many breakthroughs in low-dimensional materials,especially in two-dimensional(2D)atomically thin crystals like graphene.As structural analogues of graphene but with a sizeable band gap,monolayers of atomically thin transition metal dichalcogenides(with formula of MX2,M=Mo,W;X=S,Se,Te,etc.)have emerged as the ideal 2D prototypes for exploring fundamentals in physics such as valleytronics due to the quantum confinement effects,and for engineering a wide range of nanoelectronic,optoelectronic,and photocatalytic applications.Transition metal trioxides as promising materials with low evaporation temperature,high work function,and inertness to air have been widely used in the fabrication and modification of MX2.In this review,we reported the fabrications of one-dimensional MoS2 wrapped MoO2 single crystals with varied crystal direction via atmospheric pressure chemical vapor deposition method and of 2D MoOx covered MoX2 by means of exposing MoX2 to ultraviolet ozone.The prototype devices show good performances.The approaches are common to other transition metal dichalcogenides and transition metal oxides.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21673296 and 11334014)the Science and Technology Plan of Hunan Province,China(Grant No.2015RS4002)the Postdoctoral Science Foundation of Central South University,China
文摘By employing non-equilibrium Green's function combined with the spin-polarized density-functional theory, we investigate the spin-dependent electronic transport properties of armchair arsenene nanoribbons(a As NRs). Our results show that the spin-metal and spin-semiconductor properties can be observed in a As NRs with different widths. We also find that there is nearly 100% bipolar spin-filtering behavior in the a As NR-based device with antiparallel spin configuration. Moreover, rectifying behavior and giant magnetoresistance are found in the device. The corresponding physical analyses have been given.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61306080,51203192,11334014,and 51664047)the Natural Science Foundation of Hunan Province,China(Grant No.2015JJ3143)the Scientific and Technological Project of Hunan Provincial Development and Reform Commission,China
文摘Enhancing optical and electrical performances is effective in improving power conversion efficiency of photovoltaic devices. Here, gold and silver dual nanoparticles were imported and embedded in the hole transport layer of perovskite solar cells. Due to the cooperative localized surface plasmon resonance of these two kinds of metal nanostructures, light harvest of perovskite material layer and the electrical performance of device were improved, which finally upgraded short circuit current density by 10.0%, and helped to increase power conversion efficiency from 10.4% to 11.6% under AM 1.5G illumination with intensity of 100 m W/cm;. In addition, we explored the influence of silver and gold nanoparticles on charge carrier generation, dissociation, recombination, and transportation inside perovskite solar cells.
基金supported by the National Key Research and Development Program of China (2017YFA0206600)the National Natural Science Foundation of China (51673214)the support by State Key Laboratory of Powder Metallurgy at the Central South University
文摘Organic thin film transistors(OTFTs)show great potential for applications in low-cost,light-weight flexible electronics.OTFTs were first reported in 1986 with polythiophene as the active layer material with a mobility of^105 cm2/(V s)[1].Since then,OTFTs have shown impressive improvements in device performance parameters,e.g.,mobility improved by over 4 orders of magnitude.These advances followed discoveries of new materials and improvements in device engineering,as well as in morphology and interface engineering[2–4].Flexible OTFTs(f-OTFTs)as a very important electronic component in flexible electronics are attracting a great deal of attention from both academic and industrial communities.Presently,f-OTFTs are potentially used for electronic skin[5],flexible organic integrated circuits[6],flexible active matrix displays[7]and neuromorphic devices[8].