连接顺序选择是查询优化领域中极具挑战性的研究方向,对于数据库管理系统获得良好的查询性能至关重要.然而,传统优化方法和现有智能优化方法均存在着不足,如规划时间过长、容易得到质量较差的连接计划、编码未考虑结构特征、依赖基数估...连接顺序选择是查询优化领域中极具挑战性的研究方向,对于数据库管理系统获得良好的查询性能至关重要.然而,传统优化方法和现有智能优化方法均存在着不足,如规划时间过长、容易得到质量较差的连接计划、编码未考虑结构特征、依赖基数估计和代价估计使得连接计划无法反映真实的执行时间等.针对上述问题,提出了一种新型基于异步Dueling DQN(Deep Q-network)和计划时间预测网络的连接优化器:ADP-Join(Asynchronous Dueling DQN and Plan Latency Prediction Network for Join Order Selection).ADP-Join集成了一种新的编码方法,能够区分不同结构的连接计划.ADP-Join设计了计划时间预测网络PLN(Plan Latency Prediction Network)来改善现有基于强化学习优化器的奖励机制.再者,提出异步更新机制改进Dueling DQN模型来提升训练性能和减少训练时间.大量的实验结果表明,在TPC-H和JOB真实数据集上ADP-Join的性能优于现有的智能优化器.展开更多
针对大多数空间众包(Spatial Crowdsourcing, SC)中任务分配算法缺乏考虑工人主观积极性的影响,提出了一种利用车联网(Internet of Vehicles, IoV)技术辅助积极性感知的SC任务分配框架(Task Allocation Framework in Spatial Crowdsourc...针对大多数空间众包(Spatial Crowdsourcing, SC)中任务分配算法缺乏考虑工人主观积极性的影响,提出了一种利用车联网(Internet of Vehicles, IoV)技术辅助积极性感知的SC任务分配框架(Task Allocation Framework in Spatial Crowdsourcing Based on Internet of Vehicles Assisted Positivity Sensing, IOV-SCA)来甄别消极工人并进行任务分配。IOV-SCA模型分为2个阶段:第1阶段利用部署在路侧单元上的Bi-PSM模型(Positivity Sensing Model Based on BiLSTM)来挖掘消极工人,旨在利用加入注意力机制的BiLSTM模型计算工作停滞时间并与给定阈值比较,从而辨别工人的积极性;第2阶段利用部署在云服务器上的PS-TAA算法(Task Allocation Algorithm Based on Positivity Sensing)进行任务分配,旨在激励工人的同时满足系统效用最大化。在真实数据集上进行大量对比实验,结果表明,IOV-SCA模型有效提高了任务分配的效率并且较其他代表性算法可提供更优的分配结果。展开更多
网络流量监控与分析(Network Traffic Monitoring and Analysis,NTMA)作为网络管理技术的关键组成部分,能够有效提高互联网等大型网络的健壮性。然而随着互联网业务的复杂性和通信量不断增加,如何设计具有高可扩展性、实时性和高安全性...网络流量监控与分析(Network Traffic Monitoring and Analysis,NTMA)作为网络管理技术的关键组成部分,能够有效提高互联网等大型网络的健壮性。然而随着互联网业务的复杂性和通信量不断增加,如何设计具有高可扩展性、实时性和高安全性的NTMA应用是一个极其重要且严峻的挑战。将大数据处理技术引入NTMA应用,能够有效提升数据传输过程中的信息量、传输速率、多样性以及准确性。为了进一步研究面向大数据的NTMA算法,首先介绍NTMA算法的背景技术,包括现有的大数据技术和NTMA应用框架;其次,介绍NTMA应用的数据管理技术,并详细阐述数据管理的主要流程和关键技术;最后,概述基于大数据的NTMA框架的最新研究方法。展开更多
文摘连接顺序选择是查询优化领域中极具挑战性的研究方向,对于数据库管理系统获得良好的查询性能至关重要.然而,传统优化方法和现有智能优化方法均存在着不足,如规划时间过长、容易得到质量较差的连接计划、编码未考虑结构特征、依赖基数估计和代价估计使得连接计划无法反映真实的执行时间等.针对上述问题,提出了一种新型基于异步Dueling DQN(Deep Q-network)和计划时间预测网络的连接优化器:ADP-Join(Asynchronous Dueling DQN and Plan Latency Prediction Network for Join Order Selection).ADP-Join集成了一种新的编码方法,能够区分不同结构的连接计划.ADP-Join设计了计划时间预测网络PLN(Plan Latency Prediction Network)来改善现有基于强化学习优化器的奖励机制.再者,提出异步更新机制改进Dueling DQN模型来提升训练性能和减少训练时间.大量的实验结果表明,在TPC-H和JOB真实数据集上ADP-Join的性能优于现有的智能优化器.
文摘现有基于深度学习的面部表情识别模型不能有效地应对面部遮挡部分的干扰,无法准确捕捉面部未遮挡部分的特征,会导致识别准确率降低。为此,提出一种新型融合注意力机制的遮挡面部表情识别框架FER-AM(facial expression recognition framework based on attention mechanism),应用局部特征网络提取面部表情的局部关键特征,设计全局特征网络学习整个面部表情中的互补信息,采用注意力机制处理面部遮挡部分如眼镜、口罩和围巾等。在RAF-DB、AffectNet、CK+(Cohn Kanade)及FED-RO数据集进行大量实验,结果表明:FER-AM的7种表情分类性能均优于基于深度学习的代表性人脸面部表情识别模型,识别准确率达到88.1%。
文摘针对大多数空间众包(Spatial Crowdsourcing, SC)中任务分配算法缺乏考虑工人主观积极性的影响,提出了一种利用车联网(Internet of Vehicles, IoV)技术辅助积极性感知的SC任务分配框架(Task Allocation Framework in Spatial Crowdsourcing Based on Internet of Vehicles Assisted Positivity Sensing, IOV-SCA)来甄别消极工人并进行任务分配。IOV-SCA模型分为2个阶段:第1阶段利用部署在路侧单元上的Bi-PSM模型(Positivity Sensing Model Based on BiLSTM)来挖掘消极工人,旨在利用加入注意力机制的BiLSTM模型计算工作停滞时间并与给定阈值比较,从而辨别工人的积极性;第2阶段利用部署在云服务器上的PS-TAA算法(Task Allocation Algorithm Based on Positivity Sensing)进行任务分配,旨在激励工人的同时满足系统效用最大化。在真实数据集上进行大量对比实验,结果表明,IOV-SCA模型有效提高了任务分配的效率并且较其他代表性算法可提供更优的分配结果。
文摘网络流量监控与分析(Network Traffic Monitoring and Analysis,NTMA)作为网络管理技术的关键组成部分,能够有效提高互联网等大型网络的健壮性。然而随着互联网业务的复杂性和通信量不断增加,如何设计具有高可扩展性、实时性和高安全性的NTMA应用是一个极其重要且严峻的挑战。将大数据处理技术引入NTMA应用,能够有效提升数据传输过程中的信息量、传输速率、多样性以及准确性。为了进一步研究面向大数据的NTMA算法,首先介绍NTMA算法的背景技术,包括现有的大数据技术和NTMA应用框架;其次,介绍NTMA应用的数据管理技术,并详细阐述数据管理的主要流程和关键技术;最后,概述基于大数据的NTMA框架的最新研究方法。