We propose an ultra-broadband and polarization independent planar absorber comprising multilayered graphene. The bandwidth of the proposed absorber is extended by increasing the number of layers of graphene, and it is...We propose an ultra-broadband and polarization independent planar absorber comprising multilayered graphene. The bandwidth of the proposed absorber is extended by increasing the number of layers of graphene, and it is polarization independent due to its symmetrical unit structure. The full wave simulation results show that an absorber with three graphenebased layers can efficiently harvest an electromagnetic wave with random polarization from 17.9 GHz to 188.7 GHz(i.e.,covering frequency regimes from K to D bands and relative bandwidth of - 165%). The physical absorption mechanism of ultra-broadband absorption has been elaborated upon using the destructive interference method and multiple resonances approach in a multilayered medium. The proposed absorber can be used in many applications such as medical treatment,electromagnetic compatibility, and stealth technique.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61661012,61461016,61361005,and 61561013)the Natural Science Foundation of Guangxi,China(Grant No.2017JJB160028)+1 种基金the Program for Innovation Research Team of Guilin University of Electronic Technology,Chinathe Dean Project of Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing,China
文摘We propose an ultra-broadband and polarization independent planar absorber comprising multilayered graphene. The bandwidth of the proposed absorber is extended by increasing the number of layers of graphene, and it is polarization independent due to its symmetrical unit structure. The full wave simulation results show that an absorber with three graphenebased layers can efficiently harvest an electromagnetic wave with random polarization from 17.9 GHz to 188.7 GHz(i.e.,covering frequency regimes from K to D bands and relative bandwidth of - 165%). The physical absorption mechanism of ultra-broadband absorption has been elaborated upon using the destructive interference method and multiple resonances approach in a multilayered medium. The proposed absorber can be used in many applications such as medical treatment,electromagnetic compatibility, and stealth technique.