Bi2Se3, as a three-dimensional topological insulator, has attracted worldwide attention for its unique surface states which are protected by time-reversal symmetry. Here we report the synthesis and characterization of...Bi2Se3, as a three-dimensional topological insulator, has attracted worldwide attention for its unique surface states which are protected by time-reversal symmetry. Here we report the synthesis and characterization of high-quality singlecrystalline Bi2Se3 nanowires. Bi2Se3 nanowires were synthesized by chemical vapor deposition(CVD) method via goldcatalyzed vapor-liquid-solid(VLS) mechanism. The structure and morphology were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), x-ray photoelectron spectroscopy(XPS), and Raman spectroscopy. In magnetotransport measurements, the Aharonov–Bohm(AB) effect was observed in a nanowire-based nanodevice, suggesting the existence of surface states in Bi2Se3 nanowires.展开更多
基金Project supported by the National Key Basic Research Program of China(Grant Nos.2014CB921103 and 2013CB921103)the National Natural Science Foundation of China(Grant Nos.11274003 and 91421109)Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics,China
文摘Bi2Se3, as a three-dimensional topological insulator, has attracted worldwide attention for its unique surface states which are protected by time-reversal symmetry. Here we report the synthesis and characterization of high-quality singlecrystalline Bi2Se3 nanowires. Bi2Se3 nanowires were synthesized by chemical vapor deposition(CVD) method via goldcatalyzed vapor-liquid-solid(VLS) mechanism. The structure and morphology were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), x-ray photoelectron spectroscopy(XPS), and Raman spectroscopy. In magnetotransport measurements, the Aharonov–Bohm(AB) effect was observed in a nanowire-based nanodevice, suggesting the existence of surface states in Bi2Se3 nanowires.