期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于改进灰色关联分析的BA-BP短期负荷预测 被引量:12
1
作者 刘晓悦 魏宇册 《科学技术与工程》 北大核心 2020年第1期223-227,共5页
针对短期电力负荷随机性强、预测精度低等问题,提出了基于模糊灰色聚类与蝙蝠优化神经网络的短期负荷预测模型。采用模糊聚类方法选择相似日粗集,然后用改进的灰色关联分析法选取相似日;为了克服传统BP算法易陷入局部极值和收敛速度慢... 针对短期电力负荷随机性强、预测精度低等问题,提出了基于模糊灰色聚类与蝙蝠优化神经网络的短期负荷预测模型。采用模糊聚类方法选择相似日粗集,然后用改进的灰色关联分析法选取相似日;为了克服传统BP算法易陷入局部极值和收敛速度慢等问题,利用相似日集中的样本训练蝙蝠优化的BP神经网络预测模型。以某地区的历史数据为实际算例,将文中所提算法与普通的BP神经网络、传统灰色关联与蝙蝠优化的BP神经网络预测结果相比,结果表明所提方法有很高预测精度和稳定性,在实际中有一定应用价值。 展开更多
关键词 负荷预测 模糊聚类 灰色关联分析法 蝙蝠算法 相似日
下载PDF
基于改进混沌搜索的AMPSO-BP短期负荷预测 被引量:8
2
作者 刘晓悦 魏宇册 马伟宁 《水电能源科学》 北大核心 2020年第4期189-192,共4页
为了精准预测微电网短期负荷,采用模糊聚类方法选择相似日粗集,用灰色关联分析法选取相似日,并针对神经网络易陷入局部极小值的缺点,提出基于混沌搜索的自适应变异粒子群优化算法(AMPSO)获得神经网络最佳参数,建立AMPSO-BP神经网络短期... 为了精准预测微电网短期负荷,采用模糊聚类方法选择相似日粗集,用灰色关联分析法选取相似日,并针对神经网络易陷入局部极小值的缺点,提出基于混沌搜索的自适应变异粒子群优化算法(AMPSO)获得神经网络最佳参数,建立AMPSO-BP神经网络短期负荷预测模型。对收集的电网数据进行试验仿真结果显示,所提方法有很高的预测精度和稳定性,在实际中有一定的应用价值。 展开更多
关键词 微电网 短期负荷 混沌搜索 模糊聚类 灰色关联分析 自适应变异粒子群优化
下载PDF
优化神经网络的锂电池SOC估算 被引量:11
3
作者 刘晓悦 魏宇册 《机械设计与制造》 北大核心 2021年第11期83-86,共4页
神经网络由于强大的非线性逼近能力、不需要建立数学模型等优势可以很好地完成荷电状态(state of charge,SOC)预测。但是常用的BP神经网络也存在学习效率慢、容易陷入局部极小值的缺点。为改进传统神经网络的不足,提高预测精度,提出自... 神经网络由于强大的非线性逼近能力、不需要建立数学模型等优势可以很好地完成荷电状态(state of charge,SOC)预测。但是常用的BP神经网络也存在学习效率慢、容易陷入局部极小值的缺点。为改进传统神经网络的不足,提高预测精度,提出自适应变异粒子群优化算法(Particle Swarm Optimizition with Adaptive Mutation,AMPSO)与BP神经网络相结合的估算方法。在高级车辆仿真器(ADVISOR)仿真环境下,利用实际工况条件下的数据进行SOC估计,并与PSO、EKF、UKF方法对比,结果显示,优化后的BP神经网络预测误差在2%以内,说明所提的SOC估计方法有更好的预测准确性和稳定性。 展开更多
关键词 荷电状态 神经网络 高级车辆仿真器 自适应变异粒子群优化
下载PDF
改进混沌搜索的AMPSO-BP激光铣削质量预测
4
作者 刘晓悦 魏宇册 《激光杂志》 北大核心 2020年第3期43-47,共5页
为了更好地控制激光铣削的质量,建立了激光铣削质量和铣削层参数的神经网络模型。针对神经网络易陷入局部极小值的缺点,提出混沌搜索的自适应变异粒子群优化算法(AMPSO)获得神经网络最佳参数,建立了AMPSO-BP激光铣削质量预测模型。最后... 为了更好地控制激光铣削的质量,建立了激光铣削质量和铣削层参数的神经网络模型。针对神经网络易陷入局部极小值的缺点,提出混沌搜索的自适应变异粒子群优化算法(AMPSO)获得神经网络最佳参数,建立了AMPSO-BP激光铣削质量预测模型。最后以某种材料的激光铣削质量预测为例,将文中所提算法与PSO-BP、BP神经网络预测结果相比,结果表明所提方法有很高预测精度且预测误差明显减小,在实际中有一定应用价值。 展开更多
关键词 铣削质量 神经网络 混沌搜索 自适应变异粒子群优化 激光技术
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部