先利用羟基化多壁碳纳米管(MWCNTs-OH)与纸纤维制备了复合纤维纸(MWCNTs-OHP),然后将该复合纤维纸夹在两层PP隔膜之间组装三明治结构隔膜(PP@MWCNTs-OHP@PP)并应用于锂硫电池.利用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、红外光谱...先利用羟基化多壁碳纳米管(MWCNTs-OH)与纸纤维制备了复合纤维纸(MWCNTs-OHP),然后将该复合纤维纸夹在两层PP隔膜之间组装三明治结构隔膜(PP@MWCNTs-OHP@PP)并应用于锂硫电池.利用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、红外光谱和元素能谱分析(EDS)等对材料进行结构和性能表征.电化学测试结果表明,PP@MWCNTs-OHP@PP三明治隔膜有效提高了锂硫电池的性能.在0.1C倍率下,电池首次放电比容量达到1532 m A·h/g,活性物质的利用率达到91.5%.在1C倍率下充放电循环500周后,放电比容量依然维持516 m A·h/g,每周循环衰减率为0.028%,库仑效率保持在96.4%以上.充放电倍率从3C减小到0.1C后,放电比容量从336 m A·h/g恢复到820 m A·h/g,显示出极佳的倍率性能.展开更多
为了抑制热力学穿梭效应,改善锂硫电池的电化学性能.将三(2-羧乙基)膦芳纶纸中间层(TCEP-AP)嵌在锂硫电池正极和隔膜之间.通过透射电子显微镜(TEM)、扫描电子显微镜(SEM)、红外光谱和元素能谱分析(EDS)等对材料进行结构和性能表征.电化...为了抑制热力学穿梭效应,改善锂硫电池的电化学性能.将三(2-羧乙基)膦芳纶纸中间层(TCEP-AP)嵌在锂硫电池正极和隔膜之间.通过透射电子显微镜(TEM)、扫描电子显微镜(SEM)、红外光谱和元素能谱分析(EDS)等对材料进行结构和性能表征.电化学实验表明,TCEP是一种特别有效的多硫化物剪切剂,在0. 1C倍率时,S-TCEP-AP锂硫电池的初始放电容量达到1544 m A·h·g^-1.在1C倍率下循环400次后,比放电容量仍维持在609 m A·h·g^-1,衰减率极低(每周衰减0.029%),展现出良好的倍率和循环性能.展开更多
文摘先利用羟基化多壁碳纳米管(MWCNTs-OH)与纸纤维制备了复合纤维纸(MWCNTs-OHP),然后将该复合纤维纸夹在两层PP隔膜之间组装三明治结构隔膜(PP@MWCNTs-OHP@PP)并应用于锂硫电池.利用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、红外光谱和元素能谱分析(EDS)等对材料进行结构和性能表征.电化学测试结果表明,PP@MWCNTs-OHP@PP三明治隔膜有效提高了锂硫电池的性能.在0.1C倍率下,电池首次放电比容量达到1532 m A·h/g,活性物质的利用率达到91.5%.在1C倍率下充放电循环500周后,放电比容量依然维持516 m A·h/g,每周循环衰减率为0.028%,库仑效率保持在96.4%以上.充放电倍率从3C减小到0.1C后,放电比容量从336 m A·h/g恢复到820 m A·h/g,显示出极佳的倍率性能.
文摘为了抑制热力学穿梭效应,改善锂硫电池的电化学性能.将三(2-羧乙基)膦芳纶纸中间层(TCEP-AP)嵌在锂硫电池正极和隔膜之间.通过透射电子显微镜(TEM)、扫描电子显微镜(SEM)、红外光谱和元素能谱分析(EDS)等对材料进行结构和性能表征.电化学实验表明,TCEP是一种特别有效的多硫化物剪切剂,在0. 1C倍率时,S-TCEP-AP锂硫电池的初始放电容量达到1544 m A·h·g^-1.在1C倍率下循环400次后,比放电容量仍维持在609 m A·h·g^-1,衰减率极低(每周衰减0.029%),展现出良好的倍率和循环性能.