In order to investigate the formation mechanisms of the layered growth phenomena in diffusion couples with spinodal decomposition,a phase field model combined with elastic strain field was employed.Microstructure evol...In order to investigate the formation mechanisms of the layered growth phenomena in diffusion couples with spinodal decomposition,a phase field model combined with elastic strain field was employed.Microstructure evolutions of diffusion couple with spinodal decomposition in binary alloys were numerically simulated by considering concentration fluctuation and elastic anisotropy.The simulation results indicate that the number of the periodical layers decreases with the increase of initial concentration fluctuation,even with large elastic anisotropy.The growth of layered microstructures can be attributed to the directional diffusion enhanced by initially discontinuous chemical potential at the interface.展开更多
基金Project(2017YFB0702401) supported by the National Key R&D Program of ChinaProject(51301146) supported by the National Natural Science Foundation of ChinaProjects(20720170038,20720170048) supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to investigate the formation mechanisms of the layered growth phenomena in diffusion couples with spinodal decomposition,a phase field model combined with elastic strain field was employed.Microstructure evolutions of diffusion couple with spinodal decomposition in binary alloys were numerically simulated by considering concentration fluctuation and elastic anisotropy.The simulation results indicate that the number of the periodical layers decreases with the increase of initial concentration fluctuation,even with large elastic anisotropy.The growth of layered microstructures can be attributed to the directional diffusion enhanced by initially discontinuous chemical potential at the interface.
基金National Key Basic Research and Development Program of China(2016YFB0701401,2017YFB0702901)National Natural Science Foundation of China(51571168,51771158,51471138)International Science and Technology Cooperation Program of China(2014DFA53040)