期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
MaskMix:用于变化检测的掩码混合数据增强方法 被引量:1
1
作者 邢艳 魏接达 +1 位作者 汪若飞 黄睿 《计算机应用研究》 CSCD 北大核心 2023年第12期3834-3840,3847,共8页
数据增强是提升变化检测模型泛化能力的一种主要方法。尽管现有的数据增强方法在图像分类、目标检测中取得了较好的效果,但忽略了多个时间序列图像之间的差异和变化目标的多样性。为了较好地保留变化区域并且增加复杂的背景信息,基于变... 数据增强是提升变化检测模型泛化能力的一种主要方法。尽管现有的数据增强方法在图像分类、目标检测中取得了较好的效果,但忽略了多个时间序列图像之间的差异和变化目标的多样性。为了较好地保留变化区域并且增加复杂的背景信息,基于变化区域掩码,提出一种适用于变化检测的数据增强方法:MaskMix。首先,将当前图像对的变化区域粘贴到一个图像对上,得到具有新的背景和新的变化的变化图像对。其次,采用多路径加权融合策略进一步增强变化图像对。在每条路径上,从图像处理集合中随机选取一种经典的图像处理方法进一步处理变化图像对,然后使用Dirichlet分布产生的K维权重将K条路径处理后的图像对进行融合。最后,通过跳跃连接将处理前的图像对和处理后的图像对按Beta分布产生权重,进行更深层次的混合。实验结果表明,提出的MaskMix在BCD和LEVIR-CD两个数据集上,有效地提升了变化检测方法ADCDNet、BIT、ChangeFormer、SNUNet和DSAMNet的泛化性能。与现有的图像增强方法MixUp、AugMix、MUM和CropMix相比,MaskMix能有效增加变化图像的复杂性和多样性,提升现有变化检测方法的泛化性能。 展开更多
关键词 数据增强 图像增强 变化检测 掩码混合 图像混合
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部