灰狼优化算法(Grey Wolf Optimization,GWO)是一种新型的群智能优化算法。与其他智能优化算法类似,该算法仍存在收敛速度慢、容易陷入局部极小点的缺点。针对这一问题,提出了具有自适应搜索策略的改进算法。为了提高算法的收敛速度和优...灰狼优化算法(Grey Wolf Optimization,GWO)是一种新型的群智能优化算法。与其他智能优化算法类似,该算法仍存在收敛速度慢、容易陷入局部极小点的缺点。针对这一问题,提出了具有自适应搜索策略的改进算法。为了提高算法的收敛速度和优化精度,通过适应度值控制智能个体位置,并引入了最优引导搜索方程;另一方面,为提高GWO的种群多样性,改进算法利用位置矢量差随机跳出局部最优。最后对10个标准测试函数进行了仿真实验,并与其他4种算法进行了比较,统计结果和Wilcoxon符号秩检验结果均表明,所提出的改进算法在收敛速度以及搜索精度方面具有明显优势。展开更多
灰狼优化算法(Grey Wolf Optimization,GWO)是新型启元优化算法,相比于其他群体智能优化算法,该算法同样存在收敛速度较慢、不稳定、易陷入局部最优等问题。针对上述问题,根据GWO算法的结构特点,提出了一种自适应调整策略的混沌灰狼优...灰狼优化算法(Grey Wolf Optimization,GWO)是新型启元优化算法,相比于其他群体智能优化算法,该算法同样存在收敛速度较慢、不稳定、易陷入局部最优等问题。针对上述问题,根据GWO算法的结构特点,提出了一种自适应调整策略的混沌灰狼优化算法(Chaotic Local Search GWO),利用自适应调整策略来提高GWO算法的收敛速度,通过混沌局部搜索策略增加种群的多样性,使搜索过程避免陷入局部最优。最后利用6个测试函数对算法进行仿真验证,并结合其他4种算法进行了横向比较。实验结果证明,所提出的改进算法在收敛速度、精度以及稳定性方面具有明显的优势。展开更多
文摘灰狼优化算法(Grey Wolf Optimization,GWO)是一种新型的群智能优化算法。与其他智能优化算法类似,该算法仍存在收敛速度慢、容易陷入局部极小点的缺点。针对这一问题,提出了具有自适应搜索策略的改进算法。为了提高算法的收敛速度和优化精度,通过适应度值控制智能个体位置,并引入了最优引导搜索方程;另一方面,为提高GWO的种群多样性,改进算法利用位置矢量差随机跳出局部最优。最后对10个标准测试函数进行了仿真实验,并与其他4种算法进行了比较,统计结果和Wilcoxon符号秩检验结果均表明,所提出的改进算法在收敛速度以及搜索精度方面具有明显优势。
文摘灰狼优化算法(Grey Wolf Optimization,GWO)是新型启元优化算法,相比于其他群体智能优化算法,该算法同样存在收敛速度较慢、不稳定、易陷入局部最优等问题。针对上述问题,根据GWO算法的结构特点,提出了一种自适应调整策略的混沌灰狼优化算法(Chaotic Local Search GWO),利用自适应调整策略来提高GWO算法的收敛速度,通过混沌局部搜索策略增加种群的多样性,使搜索过程避免陷入局部最优。最后利用6个测试函数对算法进行仿真验证,并结合其他4种算法进行了横向比较。实验结果证明,所提出的改进算法在收敛速度、精度以及稳定性方面具有明显的优势。