Global stability and instability of a class of discrete-time adaptive nonlinear control systems are investigated.The systems to be controlled are assumed to be linear in unknown parameters but nonlinear in dynamics wh...Global stability and instability of a class of discrete-time adaptive nonlinear control systems are investigated.The systems to be controlled are assumed to be linear in unknown parameters but nonlinear in dynamics which are characterizEd by a nonlinear function f(x).It is shown that in the scalar parameter case,when the standard least-squares (LS) method is used in estimation,the certainty equivalence adaptive control is globally stable whenever f(x) has a growth rate |f(x)| =0(||x||b) with b<8.Moreover,in the case where b≥8,it is also shown that the dosed-loop adaptive control system does not have global stability in general.Both the results found and the new analytical methods introduced may be regarded as a basic step for further study of discrete-time adaptive nonlinear control systems.展开更多
基金Project supported by the National Natural Science Foundation of China.
文摘Global stability and instability of a class of discrete-time adaptive nonlinear control systems are investigated.The systems to be controlled are assumed to be linear in unknown parameters but nonlinear in dynamics which are characterizEd by a nonlinear function f(x).It is shown that in the scalar parameter case,when the standard least-squares (LS) method is used in estimation,the certainty equivalence adaptive control is globally stable whenever f(x) has a growth rate |f(x)| =0(||x||b) with b<8.Moreover,in the case where b≥8,it is also shown that the dosed-loop adaptive control system does not have global stability in general.Both the results found and the new analytical methods introduced may be regarded as a basic step for further study of discrete-time adaptive nonlinear control systems.