期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
FPCBC:基于众包聚合的联邦学习隐私保护分类系统 被引量:2
1
作者 金歌 晓超 +1 位作者 魏森茂 王皓 《计算机研究与发展》 EI CSCD 北大核心 2022年第11期2377-2394,共18页
随着企业、政府以及私人等数据资产的不断增加,机器学习领域对于图像等分类应用需求也随之不断增涨.为了应对各种实际的需求,机器学习即服务(machine learning as a service,MLAAS)的云服务部署思想逐渐成为主流.然而,基于云服务实现的... 随着企业、政府以及私人等数据资产的不断增加,机器学习领域对于图像等分类应用需求也随之不断增涨.为了应对各种实际的需求,机器学习即服务(machine learning as a service,MLAAS)的云服务部署思想逐渐成为主流.然而,基于云服务实现的应用往往会带来严重的数据隐私安全问题.FPCBC(federated learning privacy-preserving classification system based on crowdsourcing aggregation)是一种基于众包聚合的联邦学习隐私保护分类系统.它将分类任务众包给多个边缘参与方并借助云计算来完成,不再使用联合训练理想模型的方式来得到可信度高的分类结果,而是让参与方先根据本地有限数据训练出的模型进行推理,然后再使用成熟的算法对推理结果聚合得到较高准确率的分类.重要的是,保证了数据查询方不会泄露任何隐私数据,很好地解决了传统MLAAS的隐私安全问题.在系统实现中,使用同态加密来对需要进行机器学习推理的图像数据加密;改善了一种众包的联邦学习分类算法,并通过引入双服务器机制来实现整个系统的隐私保护计算.通过实验和性能分析表明了该系统的可行性,且隐私保护的安全程度得到了显著提升,更适用于实际生活中对隐私安全需求较高的应用场景. 展开更多
关键词 联邦学习 众包 同态加密 隐私保护机器学习 分类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部