讨论二阶四点微分方程组边值问题u″+p(t)f(t,u(t),v(t))=0,0 t 1,v″+q(t)g(t,u(t),v(t))=0,0 t 1,u(0)=a1x(ξ1),u(1)=b1x(η1)v(0)=a2x(ξ2),v(1)=b2x(η2)如果函数f,g:[0,1]×[0,∞)×[0,∞)→[0,∞)是连续的,并赋予f、g一...讨论二阶四点微分方程组边值问题u″+p(t)f(t,u(t),v(t))=0,0 t 1,v″+q(t)g(t,u(t),v(t))=0,0 t 1,u(0)=a1x(ξ1),u(1)=b1x(η1)v(0)=a2x(ξ2),v(1)=b2x(η2)如果函数f,g:[0,1]×[0,∞)×[0,∞)→[0,∞)是连续的,并赋予f、g一定的增长条件,利用Leggett-Williama不动点定理,证明了上述边值问题至少存在三对正解.展开更多
文摘讨论二阶四点微分方程组边值问题u″+p(t)f(t,u(t),v(t))=0,0 t 1,v″+q(t)g(t,u(t),v(t))=0,0 t 1,u(0)=a1x(ξ1),u(1)=b1x(η1)v(0)=a2x(ξ2),v(1)=b2x(η2)如果函数f,g:[0,1]×[0,∞)×[0,∞)→[0,∞)是连续的,并赋予f、g一定的增长条件,利用Leggett-Williama不动点定理,证明了上述边值问题至少存在三对正解.